![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On Stochastic Euler equation in Rd
|
R. Mikulevicius, Vilnius University G. Valiukevicius, Vilnius University |
Abstract
Following the Arnold-Marsden-Ebin approach, we
prove local (global in 2-D) existence and uniqueness of classical
(Hölder class) solutions of stochastic Euler equation with
random forcing.
|
Full text: PDF
Pages: 1-20
Published on: February 17, 2000
|
Bibliography
- S. V. Arnold, Sur la geometrie differentielle des groupes de Lie
de dimension infinie et ses applications a l'hydrodynamic des fluides
parfaits, Ann. Inst. Grenoble, 16 (1966), 319-361. Math Review link
- D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the
motion of an incompressible fluid, Ann. of Math., 92 (1970),
102-163. Math Review link
- D. G. Ebin, A concise presentation of the Euler equation of
hydrodynamics, Comm. in Partial Diff. Equations, 9 (1984), 539-559. Math Review link
- J. Marsden, Applications of global analysis in mathematical physics,
Publish or Perish, (1974). Math Review link
- L. Stupelis, Navier-Stokes equations in irregular domains,
Kluwer Academic Publishers, Dordrecht, (1995). Math Review link
- D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations
of the second order, Springer Verlag, Berlin, (1983). Math Review link
- B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic Publishers,
Dordrecht, (1990). Math Review link
- R. Mikulevicius and G. Valiukevicius, On stochastic Euler equation,
Lithuanian Math. J., 38 (1998), 181-192.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|