  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
On Stochastic Euler equation in Rd	   
  
	 | 
  
 
	  
		 
			
			   
R.  Mikulevicius, Vilnius University G.  Valiukevicius, Vilnius University 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	Following the Arnold-Marsden-Ebin approach, we
prove local (global in 2-D) existence and uniqueness of classical
(Hölder class) solutions of stochastic Euler equation with
random forcing.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 1-20
  Published on: February 17, 2000
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
 - S. V. Arnold, Sur la geometrie differentielle des groupes de Lie
 de dimension infinie et ses applications a l'hydrodynamic des fluides
 parfaits, Ann. Inst. Grenoble, 16 (1966), 319-361. Math Review link 
 
 - D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the
 motion of an incompressible fluid, Ann. of Math., 92 (1970),
 102-163. Math Review link 
 
 - D. G. Ebin, A concise presentation of the Euler equation of
 hydrodynamics, Comm. in Partial Diff. Equations, 9 (1984), 539-559. Math Review link 
 
 - J. Marsden, Applications of global analysis in mathematical physics,
 Publish or Perish, (1974). Math Review link 
 
 - L. Stupelis, Navier-Stokes equations in irregular domains,
 Kluwer Academic Publishers, Dordrecht, (1995). Math Review link 
 
 - D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations
 of the second order, Springer Verlag, Berlin, (1983). Math Review link 
 
 - B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic Publishers,
 Dordrecht, (1990). Math Review link 
 
 - R. Mikulevicius and G. Valiukevicius, On stochastic Euler equation,
 Lithuanian Math. J., 38 (1998), 181-192. 
 Math Review link 
 
  
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 	 | 
	 |