![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Where Did the Brownian Particle Go?
|
Robin Pemantle, Ohio State University Yuval Peres, University of California, Berkeley Jim Pitman, University of California, Berkeley Marc Yor, Université Pierre et Marie Curie |
Abstract
Consider the radial projection onto the unit sphere
of the path a $d$-dimensional Brownian motion $W$,
started at the center of the sphere and run for unit time.
Given the occupation measure $mu$ of this projected
path, what can be said about the terminal point $W(1)$, or about the
range of the original path? In any dimension, for each Borel set
$A$ in $S^{d-1}$, the conditional probability that the projection of
$W(1)$ is in $A$ given $mu(A)$ is just $mu(A)$. Nevertheless,
in dimension $d ge 3$, both the range and the terminal
point of $W$ can be recovered with probability 1 from $mu$.
In particular, for $d ge 3$ the conditional law of the projection of
$W(1)$ given $mu$ is not $mu$.
In dimension 2 we conjecture that
the projection of $W(1)$ cannot be recovered almost surely from $mu$,
and show that the conditional law of the projection of
$W(1)$ given $mu$ is not $mu$.
|
Full text: PDF
Pages: 1-22
Published on: January 10, 2001
|
Bibliography
-
D. J. Aldous,
Brownian excursion conditioned on its local time,
Electron. Comm. Probab. 3 (1998), 79-90.
Math. Reviews link
99m:60115
-
M. Barlow, J. Pitman and M. Yor,
On Walsh's Brownian motions,
Séminaire de Probabilités XXIII, (1998) 275-293.
Math. Reviews link
91a:60204
-
R. F. Bass and D. Khoshnevisan.
Local times on curves and uniform invariance principles,
Probab. Th. Rel. Fields 92, (1992), 465-492,
Math. Reviews link
93e:60161
-
N. H. Bingham and R. A. Doney,
On higher-dimensional analogues of the arc-sine law,
Journal of Applied Probability 25, (1988) 120-131,
Math. Reviews link
89g:60249
-
K. Burdzy.
Cut points on Brownian paths.
Ann. Probab. 17, (1989) 1012-1036,
Math. Reviews link
90m:60091
-
K. Burdzy,
Labyrinth dimension of Brownian trace.
Probab. Math. Statist. 15, (1995) 165-193,
Math. Reviews link
97j:60146
-
K. Burdzy and G. Lawler.
Nonintersection exponents for Brownian paths. II. Estimates
and applications to a random fractal.
Ann. Probab. 18, (1990) 981-1009,
Math. Reviews link
91g:60097
-
P. Carmona, F. Petit and M. Yor,
Some extensions of the arc sine law as partial consequences of the
scaling property of Brownian motion.
Probab. Th. Rel. Fields 100, (1994) 1-29,
Math. Reviews link
95f:60089
-
P. Carmona, F. Petit, and M. Yor.
Beta variables as times spent in [0,infty[ by certain perturbed
Brownian motions.
J. London Math. Soc. (2), 58(1), (1998), 239-256,
Math. Reviews link
2000b:60186
-
L. Chaumont and R. Doney.
A stochastic calculus approach to doubly perturbed Brownian motions.
Preprint, Univ. Paris VI, 1996.
Math. Reviews number not available
-
A. Dembo, Y. Peres, J. Rosen and O. Zeitouni.
Thick points for spatial Brownian motion:
multifractal analysis of occupation measure,
Ann. Probab. 28, (2000) 1-35,
Math. Reviews link
1 755 996
-
A. Dembo, Y. Peres, J. Rosen and O. Zeitouni.
Thick points for planar Brownian motion and the
Erdos-Taylor conjecture on random walk,
To appear in Acta Math, 2000.
Math. reviews number not available.
-
R. Durrett.
Probability: Theory and Examples, 2nd edition.
Duxbury Press: Belmont, CA, 1996.
Math. Reviews link
98m:60001
-
T.S. Ferguson.
Prior distributions on spaces of probability measures.
Ann. Statist., (1974) 615-629,
Math. Reviews link
55 #11479
-
R.K. Getoor and M.J. Sharpe.
On the arc-sine laws for Lévy processes.
J. Appl. Probab. 31, (1994) 76 - 89,
Math. Reviews link
94k:60111
-
T. Ignatov.
On a constant arising in the theory of symmetric groups and on
Poisson-Dirichlet measures .
Theory Probab. Appl. 27, 136-147, 1982.
Math. Reviews link
83i:10072
-
K. Itô and H. P. McKean,
Diffusion Processes and Their Sample Paths,
Second printing. Springer-Verlag (1974)
Math. Reviews link
49:9963
-
J. F. C. Kingman.
Random discrete distributions.
J. Roy. Statist. Soc. B 37, (1975) 1-22,
Math. Reviews link
51 #4505
-
F. B. Knight.
On the upcrossing chains of stopped Brownian motion .
In J. Azema, M. Emery, M. Ledoux, and M. Yor, editors,
Séminaire de Probabilités XXXII , pages 343-375.
Springer, 1998.
Lecture Notes in Math. 1686.
Math. Reviews link
2000j:60099
-
J. Lamperti.
Semi-stable stochastic processes.
Trans. Amer. Math. Soc. , 104 (1962) 62-78.
Math. Reviews link
25 #1575
-
J. Lamperti.
Semi-stable Markov processes I .
Z. Wahrsch. Verw. Gebiete , 22, (1972) 205-225.
Math. Reviews link
46 #6478
-
P. Lévy.
Sur certains processus stochastiques homogènes.
Compositio Math. , 7, (1939), 283-339.
Math. Reviews link
1,150a
-
E.A. Pecherskii and B.A. Rogozin.
On joint distributions of random variables associated with
fluctuations of a process with independent increments.
Theory Prob. Appl. , 14, (1969) 410-423.
Math. Reviews link
41 #4634
-
E. A. Perkins and S. J. Taylor.
Uniform measure results for the image of
subsets under Brownian motion.
Probab. Theory Related Fields 76, (1987) 257-289.
Math. Reviews link
88m:60122
-
M. Perman, J. Pitman, and M. Yor.
Size-biased sampling of Poisson point processes and excursions.
Probab. Th. Rel. Fields , 92, (1992) 21-39.
Math. Reviews link
93d:60088
-
M. Perman and W. Werner.
Perturbed Brownian motions .
Probab. Th. Rel. Fields , 108 (1997), 357-383.
Math. Reviews link
98i:60081
-
F. Petit.
Quelques extensions de la loi de l'arc sinus.
C.R. Acad. Sc. Paris, Serie I , 315, (1992) 855-858, 1992.
93g:60176
-
J. Pitman and M. Yor.
Arcsine laws and interval partitions derived from a stable
subordinator.
Proc. London Math. Soc. (3) , 65 (1992), 326-356.
93e:60152
-
J. Pitman and M. Yor.
Quelques identites en loi pour les processus de Bessel .
In Hommage a P.A. Meyer et J. Neveu , Asterisque, pages
249-276. Soc. Math. de France, 1996.
98c:60106
-
J. Pitman and M. Yor.
Random discrete distributions derived from self-similar random
s>ets .
Electronic J. Probability , 1:Paper 4, (1996) 1-28.
98i:60010
-
P.S. Puri and H. Rubin.
A characterization based on the absolute difference of two i.i.d.
random variables.
Ann. Math. Stat. , 41, (1970) 2113-2122.
45 #2836
-
D. Revuz and M. Yor.
Continuous martingales and Brownian motion.
Springer, Berlin-Heidelberg, 1994. 2nd edition.
95h:60072
-
J. Sethuraman.
A constructive definition of Dirichlet priors .
Statistica Sinica , 4, (1994) 639-650.
95m:62058
-
M. S. Taqqu.
A bibliographical guide to self-similar processes and long-range
dependence .
In Dependence in Probab. and Stat.: A Survey of Recent Results;
Ernst Eberlein, Murad S. Taqqu (Ed.) (1986) 137-162.
Birkhauser (Basel, Boston) ,
88g:60091
-
J. Walsh.
A diffusion with a discontinuous local time.
In Temps Locaux , volume 52-53 of Asterisque , pages
37-45. Soc. Math. de France, 1978.
81b:60042
-
J. Warren and M. Yor.
The Brownian burglar: conditioning Brownian motion by its local time
process .
In J. Azema, M. Emery, , M. Ledoux, and M. Yor, editors,
Séminaire de Probabilités XXXII , pages
328-342. Springer, 1998. Lecture Notes in Math. 1686.
99k:60208
-
M. Yor.
Some Aspects of Brownian Motion .
Lectures in Math., ETH Zurich. Birkhauser, 1992.
Part I: Some Special Functionals,
93i:60155
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|