![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Equilibrium Fluctuations for a One-Dimensional Interface in the Solid on Solid Approximation
|
Gustavo Posta, Politecnico di Milano, Italy |
Abstract
An unbounded one-dimensional solid-on-solid model with integer heights is studied.
Unbounded here means that there is no a priori restrictions on the discrete gradient of the interface. The interaction Hamiltonian of the interface is given by a finite range part, proportional to the sum of height differences, plus a part of exponentially decaying long range potentials. The evolution of the interface is a reversible Markov process.
We prove that if this system is started in the center of a box of size L after a time of order L^3 it reaches, with a very large probability, the top or the bottom of the box.
|
Full text: PDF
Pages: 962-987
Published on: July 18, 2005
|
Bibliography
-
P. Diaconis and L. Saloff-Coste.
Comparison theorems for reversible Markov chains.
Ann. Appl. Probab. 3 (1993), no. 3, 696-730.
Math. Review 97k:60176
-
R. Dobrushin, R. Kotecký and S. Shlosman.
Wulff Construction. A Global Shape from Local Interaction.
Translation of Mathematical Monographs, 104 (1992).
AMS.
Math. Review 93k:82002
-
G. F. Lawler and A. D. Sokal.
Bounds on the $L^2$ Spectrum for Markov Chains and Markov Processes: a Generalization of Cheeger's Inequality.
Trans. Amer. Math. Soc. 309 (1988), no. 2, 557-580.
Math. Review 89h:60105
-
T. M. Liggett.
Interacting Particles Systems.
Grundlehren der Mathematischen Wissenschaften 276 (1985).
Springer-Verlag, New York-Berlin.
Math. Review 86e:60089
-
S. T. Lu and H.-T. Yau.
Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics.
Comm. Math. Phys. 156 (1993), 399-433.
Math. Review 95f:60122
-
F. Martinelli.
On the two dimensional dynamical Ising model in the phase coexistence region.
J. Statist. Phys. 76 (1994), no. 5-6, 1179-1246.
Math. Review 95j:82035
-
F. Martinelli.
Lectures on Glauber dynamics for discrete spin models
in Lectures on probability theory and statistics (Saint-Flour, 1997).
Lecture Notes in Math. 1717 (1999) 93-191.
Sringer-Verlag.
Math. Review 2002a:60163
-
F. Martinelli and E. Olivieri.
Approach to equilibrium of Glauber dynamics in the one phase region I: the attractive case.
Comm. Math. Phys. 161 (1994), no. 3, 447-486.
Math. Review 96c:82040
-
F. Martinelli and E. Olivieri.
Approach to equilibrium of glauber dynamics in the one phase region II: the general case.
Comm. Math. Phys. 161 (1994), no. 3, 487-514 .
Math. Review 96c:82041
-
G. Posta.
Spectral Gap for an Unrestricted Kawasaki Type Dynamics,
ESAIM Probability & Statistics 1 (1997), 145-181.
Math. Review 98m:60157
-
A. D. Sokal and L. E. Thomas.
Absence of mass gap for a class of stochastic contour models.
J. Statist. Phys. 51 (1988), no. 5-6, 907-947.
Math. Review 90b:60097
-
D. W. Stroock and B. Zegarlinski.
The logarithmic Sobolev inequality for discrete spin on a lattice.
Comm. Math. Phys. 149 (1992), no. 1, 175-193.
Math. Review 93j:82013
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|