|
|
|
| | | | | |
|
|
|
|
|
Concentration inequalities for Markov processes via coupling
|
Frank Redig, Mathematical Institute Leiden university Jean Rene Chazottes, CPHT, Ecole Polytechnique, Paris |
Abstract
We obtain moment and Gaussian bounds for general coordinate-wise Lipschitz functions
evaluated along the sample path of a Markov chain.
We treat Markov chains on general (possibly unbounded) state spaces via a coupling method.
If the first moment of the coupling time exists, then we obtain
a variance inequality. If a moment of order 1+a (a>0) of the
coupling time exists, then depending on the behavior of the stationary
distribution, we obtain higher moment bounds. This immediately implies
polynomial concentration inequalities.
In the case that a moment of order 1+ a is finite, uniformly in the
starting point of the coupling, we obtain a Gaussian bound.
We illustrate the general results with house of cards processes,
in which both uniform and non-uniform behavior of moments of the coupling time can occur.
|
Full text: PDF
Pages: 1162-1180
Published on: May 31, 2009
|
Bibliography
-
R. Adamczak, A tail inequality for suprema of unbounded empirical
processes with applications to Markov chains.
Electron. J. Prob. 13, 1000-1034, (2008).
2424985
-
S. Bobkov and F. G"otze.
Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999), 1--28.
J. Funct. Anal. 163 (1999), 1--28.
1682772
-
S. Boucheron, O. Bousquet, G. Lugosi and P. Massart,
Moment inequalities for functions of independent random
variables.
Ann. Prob. 33, 514-560, (2005).
2123200
-
X. Bressaud, R. Fern'andez, and A. Galves.
Decay of correlations for non-H"olderian dynamics. A coupling approach.
Electron. J. Probab. 4 (1999), no. 3 (19 pp.).
1675304
-
D.L. Burkholder.
Sharp inequalities for martingales and stochastic integrals.
Colloque Paul L'evy sur les Processus Stochastiques (Palaiseau, 1987).
Ast'erisque No. 157-158 (1988), 75--94.
0976214
-
S. Chatterjee.
Stein's method for concentration inequalities.
Probab. Theory Related Fields 138 (2007), no. 1-2, 305--321.
2288072
-
J.-R. Chazottes, P. Collet, C. K"ulske and F. Redig.
Concentration inequalities for random fields via coupling.
Probab. Theory Related Fields 137 (2007), no. 1-2, 201--225.
2278456
-
P. Collet.
Variance and exponential estimates via coupling.
Bull. Braz. Math. Soc. 37 (2006), no. 4, 461--475.
2284882
-
H. Djellout, A. Guillin and L. Wu.
Transportation cost-information inequalities and applications to random dynamical systems and diffusions.
Ann. Probab. 32 (2004), no. 3B, 2702--2732.
2078555
-
R. Douc, A. Guillin and E. Moulines.
Bounds on Regeneration Times and Limit Theorems for Subgeometric Markov Chains.
Annales Inst. H. Poincar'e, to appear.
-
R. Douc, G. Fort, E. Moulines and P. Soulier, Practical drift conditions
for subgeometric rates of convergence.
Ann. Appl. Prob. 14 , 1353-1377, (2004).
2071426
-
R. Douc, E. Moulines and P. Soulier,
Computable convergence rates for sub-geometric ergodic Markov chains.
Bernoulli 13 , 831-848 (2007).
2348753
-
A. Fey-den Boer, R. Meester, Ronald, C. Quant, and F. Redig.
A probabilistic approach to Zhang's sandpile model.
Comm. Math. Phys. 280 , 351--388, (2008).
2395474
-
S. Goldstein.
A note on specifications.
Z. Wahrsch. Verw. Gebiete, 46 , 45-51 (1978/79).
0512331
-
L. Kontorovich and K. Ramanan.
Concentration Inequalities for Dependent Random Variables via the Martingale Method,
prepint (2007), to appear in Ann. Probab.
Mathreview number not available
-
L. Kontorovich.
Obtaining Measure Concentration from Markov Contraction,
preprint, 2007 (arXiv:0711.0987).
Mathreview number not available
-
M. Ledoux.
The concentration of measure phenomenon,
Mathematical Surveys and Monographs 89
American Mathematical Society, Providence R.I., 2001.
1849347
-
T.M. Liggett, Interacting particle systems.
Reprint of the 1985 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005.
2108619
-
C. McDiarmid.
On the method of bounded differences,
Surveys in Combinatorics 1989, Cambridge University Press,
Cambridge (1989) 148--188.
1036755
-
K. Marton.
Bounding D-distance by informational divergence: a method to prove measure concentration.
Ann. Probab. 24 (1996), no. 2, 857--866.
1404531
-
K. Marton.
A measure concentration inequality for contracting Markov chains.
Geom. Funct. Anal. 6 (1996), no. 3, 556--571. [Erratum: Geom. Funct. Anal. 7 (1997), no. 3, 609--613.]
1392329
-
K. Marton.
Measure concentration for a class of random processes.
Probab. Theory Related Fields 110 (1998), no. 3, 427--439.
1616492
-
Y.H. Mao, Convergence rates in strong ergodicity for Markov processes.
Stochastic Process. Appl. 116 , no. 12, 1964--1976, (2006).
2307067
-
E. Rio.
In'egalit'es de Hoeffding pour les fonctions lipschitziennes de suites d'ependantes.
[Hoeffding inequalities for Lipschitz functions of dependent sequences]
C. R. Acad. Sci. Paris S'er. I Math. 330 (2000), no. 10, 905--908.
1771956
-
P.-M. Samson.
Concentration of measure inequalities for Markov chains and $Phi$-mixing processes.
Ann. Probab. 28 (2000), no. 1, 416--461.
1756011
-
H. Thorisson.
Coupling, stationarity, and regeneration.
Probability and its Applications (New York). Springer-Verlag, New York, 2000.
1741181
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|