![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit
|
Alessandra Faggionato, Department of Mathematics. University La Sapienza, Rome. Italy |
Abstract
We consider a stationary and ergodic random field
parameterized by the family of bonds in Z^d,
d>=2. The random variable associated to the
bond b is thought of as the
conductance of bond b and it ranges in a finite interval
[0,c_0]. Assuming that the set of bonds with positive conductance
has a unique infinite cluster C, we prove homogenization
results for the random walk among random conductances on C.
As a byproduct, applying a general criterion developed in a previous paper and
leading
to the hydrodynamic limit of exclusion processes with
bond-dependent transition rates, for almost all realizations of
the environment we prove the hydrodynamic limit of simple exclusion
processes among random conductances on C. The
hydrodynamic equation is given by a heat equation whose diffusion
matrix does not depend on the environment. We do not require any
ellipticity condition. As special case, C can be the
infinite cluster of supercritical Bernoulli bond percolation.
|
Full text: PDF
Pages: 2217-2247
Published on: December 21, 2008
|
Bibliography
-
G. Allaire. Homogenization and two-scale
convergence. SIAM J. Math. Anal. 23 (1992),
1482-1518.
MR1185639 Math. Review 93k:35022
-
P. Billingsley. Convergence of probability measures. Second
edition. J. Wiley, New York (1999).
MR1700749 Math. Review 2000e:60008
-
N. Berger, M. Biskup.
Quenched invariance principle for simple random walk on percolation clusters.
Probab. Theory Related Fields 137
(2007), 83-120.
MR2278453 Math. Review 2007m:60085
-
M. Biskup, T.M. Prescott. Functional CLT for random walk
among bounded random conductances. Electronic Journal of
Probability 12 (2007), 1323-1348.
Math. Review number not available
- A. De Masi, P. Ferrari, S. Goldstein, W.D. Wick.
An invariance principle for reversible Markov processes. Applications to random motions in random
environments. J. Statis. Phys. 55 (1985), 787-855.
Math. Review 91e:60107
-
R. Durrett. Ten Lectures on Particle Systems. In Lecture Notes in Mathematics
1608 , Springer, Berlin (1995).
Math. Review 97c:60236
-
A. Faggionato. Bulk diffusion of 1D exclusion process with bond
disorder. Markov Processes and Related Fields 13 (2007), 519-542.
Math. Review 2008j:60230
-
A. Faggionato, M. Jara, C. Landim.
Hydrodynamic limit
of one dimensional subdiffusive exclusion processes
with random conductances. To appear in Probab. Theory and Related Fields .
Math. Review number not available
-
A. Faggionato, F. Martinelli. Hydrodynamic limit of a
disordered lattice gas. Probab. Theory and Related Fields
127 (2003), 535-608.
Math. Review 2004i:82041
- G. Grimmett. Percolation. Second edition. Springer, Berlin
(1999). Math. Review 2001a:60114
- G. Grimmett, J. Marstrand. The supercritical phase of
percolation is well behaved. Proc. Royal Society (London) Ser.
A. 4306 (1990), 429-457. Math. Review 91m:60186
-
M. Jara. Hydrodynamic limit for the simple exclusion process on
non-homogeneous graphs. IMPA preprint . Math. Review number
not available
- M. Jara, C. Landim. Nonequilibrium central
limit theorem for a tagged particle in symmetric simple exclusion.
Annales de l'institut Henri Poincaré (B) Probabilités et
Statistiques 42 (2006), 567-577. Math. Review
2008h:60406
- C. Kipnis, C. Landim. Scaling limits of interacting particle
systems. Springer, Berlin (1999). Math. Review 2000i:60001
- S.M. Kozlov. The method of averaging and walks in
inhomogeneous environments. Russian Math. Surveys 40
(1985), 73-145. Math. Review 87b:60104
-
R. Künnemann. The diffusion limit for
reversible jump processes on Z^d with ergodic random bond
conductivities. Comm. Math. Phys. 90 (1983),
27-68. Math. Review 84m:60102
-
T.M. Liggett. Interacting particle systems.
Springer, New York (1985). Math. Review 86e:60089
- P. Mathieu. Quenched invariance principles for random walks
with random conductances}. J. Stat. Phys. 130
(2008), 1025-1046. Math. Review number not available
-
P. Mathieu, A.L. Piatnitski. Quenched
invariance principles for random walks on percolation clusters}.
Proceedings of the Royal Society A 463 (2007), 2287-2307.
Math. Review 2008e:82033
- K. Nagy. Symmetric random walk in random environment.
Period. Math. Hung. 45 (2002), 101-120. Math. Review
2003j:60143
-
G. Nguetseng. A general convergence result
for a functional related to the theory of homogenization. SIAM
J. Math. Anal. 20 (1989), 608-623. Math. Review
90j:35030
- S.E. Pastukhova. On the convergence of hyperbolic semigroups in
a variable Hilbert space. J. Math. Sci. (N.Y.) 127
(2005), 2263-2283. Math. Review number not available
-
A. Piatnitski, E. Remy. Homogenization of
elliptic difference operators. SIAM J. Math. Anal. 33
(2001), 53-83. Math. Review 2003k:39027
- J. Quastel. Diffusion in disordered media. In Proceedings
in Nonlinear Stochastic PDEs (1996), T. Funaki and W.
Woyczinky eds, Springer, New York, 65-79. Math. Review 97k:60278
- J. Quastel. Bulk diffusion in a system with site disorder.
Ann. Probab. 34 (2006), 1990-2036. Math. Review
2007i:60133
-
L.C.G. Rogers, D. Williams. Diffusions,
Markov processes and martingales. Volume 1, Second edition,
Cambridge University Press, Cambridge (2005).
Math. Review number not available
-
V. Sidoravicius, A.-S. Sznitman.
Quenched invariance principles for walks on clusters of percolation
or among random conductances. Probab. Theory Related Fields
129 (2004), 219–244. Math. Review 2005d:60155
-
V.V. Zhikov. On an extension of the method
of two-scale convergence and its applications. (Russian) Mat.
Sb. 191 (2000), 31-72; translation in Sb. Math.
191 (2000), 973-1014. Math. Review 2001k:35026
- V.V. Zhikov, A.L. Pyatnitskii. Homogenization of random
singular structures and random measures. (Russian) Izv. Ross.
Akad. Nauk Ser. Mat. 70 (2006), 23-74; translation in
Izv. Math. 70 (2006), 19-67. Math. Review
2006m:35018
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|