1. N. Balakrishnan
and M. V. Koutras (2002). Runs and scans with applications. Wiley Series in Probability and
Statistics. Wiley-Interscience [John Wiley &
Sons], New York. MR1882476
2. A.D. Barbour (1990). Stein's
method for diffusion approximations. Probab. Theory Rel.
Fields 84(3), 297-322. MR1035659
3. V. Bentkus,
B.-Y. Jing and W. Zhou (2009). On normal approximations to U-statistics. Ann. Probab. 37, 2174-2199.MR2573555
4. R. Blei
(2001). Analysis in Integer and
Fractional Dimensions. Cambridge University Press. MR1853423
5. R. Blei
and S. Janson (2004). Rademacher chaos: tail
estimates versus limit theorems. Ark. Mat
42(1), 13-29. MR2056543
6. S. Chatterjee
(2008). A new method of normal approximation. Ann Probab. 36, 1584-1610. MR2435859
7. S. Chatterjee
(2009). Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Rel. Fields 143,
1-40. MR2449121
8. L.H.Y. Chen and Q.-M. Shao (2005). Stein's method for normal approximation. In: An introduction to Stein's method, 1-59.
Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.
4, Singapore Univ. Press, Singapore,
2005. MR2235448
9. F. Daly (2008). Upper bounds
for Stein-type operators. Electron. J. Probab. 13,
566-587 (electronic). MR2399291
10. P. de Jong
(1987). A central limit theorem for generalized quadratic forms. Probab. Theory Rel. Fields 75(2), 261-277. MR0885466
11. P. de Jong
(1990). A central limit theorem for generalized multilinear
forms. J. Mult.
Anal. 34, 275-289. MR1073110
12. V.H. de la Peńa and E. Giné (1997). Decoupling. Springer-Verlag.
Berlin Heidelberg New York. MR1666908
13. B. Efron
and C. Stein (1981). The Jackknife Estimate of
Variance. Ann. Statist. 9, 586-596. MR0615434
(82k:62074)
14. A.P. Godbole
(1992). The exact and asymptotic distribution of overlapping success runs. Comm. Statist. - Theory and Methods 21, 953-967. MR1173302
15. F. Götze
(1991). On the rate of convergence in the multivariate CLT. Ann. Probab. 19, 724-739. MR1106283
16. F. Götze
and A.N. Tikhomirov (2002). Asymptotic distribution
of quadratic forms and applications. J. Theoret. Probab. 15(2), 423-475. MR1898815
17. L. Goldstein and G. Reinert
(1997). Stein's method and the zero bias transformation with application to
simple random sampling. Ann. Appl. Probab. 7(4),
935-952. MR1484792
18. J. Hájek
(1968). Asymptotic Normality of Simple Linear Rank Statistics Under Alternatives.
Ann. Math. Statist. 39, 325-346.
MR0222988
19. S. Janson (1997). Gaussian Hilbert Spaces. Cambridge
University Press. MR1474726
20. S. Karlin
and Y. Rinott (1982). Applications of ANOVA type
decompositions for comparisons of conditional variance statistics including jackknife estimates. Ann.
Statist. 10, 485-501. MR0653524
21. S. Kwapién
and W.A. Woyczyński (1992). Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Basel. MR1167198
22. M. Ledoux
and M. Talagrand (1991). Probability on Banach spaces. Springer-Verlag, Berlin Heidelberg New York. MR1102015
23. P.-A. Meyer (1992). Quantum probability for probabilists.
LNM 1538. Springer-Verlag, Berlin Heidelberg New
York. MR1222649
24. E. Mossel,
R. O'Donnell and K. Oleszkiewicz (2010). Noise
stability of functions with low influences: variance and optimality. Ann. Math. 71, 295-341. Math. Review number not available.
25. I. Nourdin and G. Peccati
(2009). Stein's method on Wiener chaos. Probab. Theory Rel.
Fields 145 (1), 75-118. Math.
Review number not available.
26. I. Nourdin and G. Peccati
(2010). Stein's method and exact Berry-Esséen bounds
for functionals of Gaussian fields. Ann. Probab.
37, 2231-2261. Math. Review
number not available.
27. I. Nourdin, G. Peccati and A.
Réveillac (2010). Multivariate normal approximation
using Stein's method and Malliavin calculus. Ann. Inst. H. Poincaré
Probab. Statist. 46, 45-58. Math. Review number not available.
28. I. Nourdin and F.G. Viens (2009). Density estimates and concentration
inequalities with Malliavin calculus. Electron. J. Probab.
14, 2287-2309 (electronic). Math.
Review number not available.
29. D. Nualart
(2006). The Malliavin
calculus and related topics. Springer-Verlag,
Berlin, 2nd edition. MR2200233
30. D. Nualart
and G. Peccati (2005). Central limit theorems for sequences of multiple
stochastic integrals. Ann. Probab. 33
(1), 177-193. MR2118863
31. G. Peccati, J.-L. Solé, M.S. Taqqu and F. Utzet (2010). Stein's method and normal approximation of Poisson
functional. Ann. Probab.
38, 443-478. Math. Review number not
available.
32. G. Peccati and M.S. Taqqu (2008). Central limit theorems for
double integrals. Bernoulli 14(3), 791-821. Math. Review number not
available.
33. G. Peccati and M.S. Taqqu (2008). Moments, cumulants
and diagram formulae for non-linear functionals of
random measure (Survey). Preprint. http://arxiv.org/abs/0811.1726.
34. N. Privault
(2008). Stochastic analysis of Bernoulli processes. Probability Surveys 5,
435-483. MR2476738
35. N. Privault
and W. Schoutens (2002). Discrete chaotic calculus
and covariance identities. Stoch. Stoch. Reports 72,
289-315. MR1897919
36. G. Reinert (2005). Three
general approaches to Stein's method. In: An
introduction to Stein's method, 183-221. Lect. Notes Ser. Inst. Math.Sci. Natl. Univ. Singap. 4,, Singapore Univ. Press, Singapore. MR2235451
37. G. Reinert and A. Röllin (2009). Multivariate normal approximation with
Stein's method of exchangeable pairs under a general linearity condition. Ann. Probab. 37, 2150-2173.MR2573554
38. Y.Rinott and V.Rotar
(1996).A multivariate CLT for local dependence with n-1/2 log n rate
and applications to multivariate graph related statistics.J. Multivariate Anal. 56,
333-350. MR1379533
39. Y.Rinott and V.Rotar
(1997). On coupling constructions and rates in the CLT for dependent summands
with applications to the antivoter model and weighted
U-statistics. Ann. Appl. Probab. 7,
1080-1105. MR1484798
40. V.I. Rotar'
(1975). Limit theorems for multilinear forms and quasipolynomial functions. Teor. Verojatnost. i Primenen. 20(3), 527-546. MR0385980
41. V.I. Rotar'
(1979). Limit theorems for polylinear forms. J. Multivariate Anal. 9, 511-530. MR0556909
42. R.P. Stanley (1997). Enumerative Combinatorics,
Vol. 1. Cambridge University Press. Cambridge. MR1442260
43. C. Stein (1972). A bound for
the error in the normal approximation to the distribution of a sum of dependent
random variables. In: Proceedings of the
Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol.
II: Probability theory, 583-602. Univ. California Press, Berkeley, CA. MR0402873
44. C. Stein (1986). Approximate computation of expectations.
Institute of Mathematical Statistics Lecture Notes - Monograph Series, 7. Institute of Mathematical
Statistics, Hayward, CA. MR0882007
45. D. Surgailis
(2003). CLTs for Polynomials of Linear Sequences: Diagram Formulae with
Applications. In: Long Range Dependence.
Birkhäuser, Basel, 111-128. MR1956046
46. W.R. van Zwet
(1984). A Berry-Esseen bound for symmetric statistics.
Z. Wahrscheinlichkeitstheorie
verw. Gebiete 66, 425-440. MR0751580
(86h:60063)