![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive
|
David A. Croydon, University of Warwick Takashi Kumagai, Kyoto University |
Abstract
We establish a variety of properties of the discrete time simple random walk on a Galton-Watson tree conditioned to survive when the offspring distribution, $Z$ say, is in the domain of attraction of a stable law with index $alphain(1,2]$. In particular, we are able to prove a quenched version of the result that the spectral dimension of the random walk is $2alpha/(2alpha-1)$. Furthermore, we demonstrate that when $alphain(1,2)$ there are logarithmic fluctuations in the quenched transition density of the simple random walk, which contrasts with the log-logarithmic fluctuations seen when $alpha=2$. In the course of our arguments, we obtain tail bounds for the distribution of the $n$th generation size of a Galton-Watson branching process with offspring distribution $Z$ conditioned to survive, as well as tail bounds for the distribution of the total number of individuals born up to the $n$th generation, that are uniform in $n$.
|
Full text: PDF
Pages: 1419-1441
Published on: August 28, 2008
|
Bibliography
- S. Alexander and R. Orbach. Density of states on fractals:
``fractons''.
J. Physique (Paris) Lett. 43 (1982), L625-L631.
- K. B. Athreya and P. E. Ney. Branching processes.
Springer-Verlag, New
York, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 196.
MR0373040
- M. T. Barlow and R. F. Bass. The construction of Brownian
motion on the
Sierpinski carpet. Ann. Inst. H. Poincare Probab. Statist. 25
(1989), no. 3, 225-257.
MR1023950
- M. T. Barlow, A. A. Jarai, T. Kumagai, and G. Slade. Random
walk on
the incipient infinite cluster for oriented percolation in high dimensions.
Comm. Math. Phys. 278 (2008), 385-31.
MR2372764
-
M. T. Barlow and T. Kumagai. Random walk on the incipient
infinite
cluster on trees. Illinois J. Math. 50 (2006), no. 1-4, 33-65
(electronic).
MR2247823
- T. Duquesne. Continuum random trees and branching processes
with
immigration. Preprint available at
arXiv:math/0509519.
- T. Duquesne and J.-F. Le Gall. The Hausdorff measure of stable
trees. ALEA 1 (2006), 393--415. MR2291942
- W. Feller. An introduction to probability theory and its
applications. Vol. II. John Wiley & Sons Inc., New York, 1966.
MR0270403
- K. Fleischmann, V. A. Vatutin, and V. Wachtel. Critical
Galton-Watson
processes: the maximum of total progenies within a large window. Preprint available at
arXiv:math/0601333.
- I. Fujii and T. Kumagai. Heat kernel estimates on the incipient
infinite
cluster for critical branching processes.
Proceedings of German-Japanese symposium in Kyoto 2006,
RIMS Kokyuroku Bessatsu B6 (2008), 85-95.
- R. van der Hofstad, F. den Hollander, and G. Slade.
Construction of the
incipient infinite cluster for spread-out oriented percolation above 4+1
dimensions. Comm. Math. Phys. 231 (2002), no. 3, 435-461.
MR1946445
- R. van der Hofstad and A. A. Jarai. The incipient infinite
cluster
for high-dimensional unoriented percolation. J. Statist. Phys. 114
(2004), no. 3-4, 625-663.
MR2035627
- B. D. Hughes. Random Walks and Random Environments. Vol. 2:
Random Environments. Oxford University Press, Oxford, 1996. MR1420619
- H. Kesten. Sub-diffusive behavior of random walk on a random
cluster. Ann.
Inst. H. Poincare Probab. Statist. 22 (1986), no. 4, 425--487.
MR2372764
- H. Kesten. Sub-diffusive behavior of random walk on a random
cluster. Unpublished proof.
- T. Kumagai and J. Misumi. Heat kernel estimates for strongly
recurrent
random walk on random media. To appear in
J. Theoret. Probab. Preprint available at arXix:0806.4507.
- J.-F. Le Gall. Random real trees. Ann. Fac. Sci. Toulouse
Math. (6) 15 (2006), no. 1, 35-62. MR2225746
- A. G. Pakes, Some new limit theorems for the critical branching
process
allowing immigration. Stochastic Processes Appl. 4 (1976), no. 2,
175-185.
MR0397912
- E. Seneta. Regularly varying functions. Springer-Verlag,
Berlin, 1976,
Lecture Notes in Mathematics, Vol. 508.
MR0453936
- R. S. Slack. A branching process with mean one and possibly
infinite
variance. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968),
139-145.
MR0228077
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|