![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Gaussian fluctuations in complex sample covariance matrices
|
Zhonggen Su, Zhejiang University |
Abstract
Let X=(Xi,j)m×n, m ≥ n, be a complex Gaussian
random matrix with mean zero and variance 1/n, let S=X*X
be a sample covariance matrix. In this paper we are mainly
interested in the limiting behavior of eigenvalues when m/n -> γ ≥ 1. Under certain
conditions on k, we prove the central limit theorem holds true
for the k-th largest eigenvalues l(k) as k tends to
infinity as n->∞. The proof is largely based on
the Costin-Lebowitz-Soshnikov argument and the asymptotic
estimates for the expectation and variance of the number of
eigenvalues in an interval. The standard technique for the RH
problem is used to compute the exact formula and asymptotic
properties for the mean density of eigenvalues. As a by-product,
we obtain a convergence speed of the mean density of eigenvalues
to the Marchenko-Pastur distribution density under the condition
| m/n-g|=O(1/n)
|
Full text: PDF
Pages: 1284-1320
Published on: December 17, 2006
|
Bibliography
- Borodin, Alexei; Okounkov, Andrei; Olshanski, Grigori. Asymptotics of Plancherel measures for symmetric groups.
J. Amer. Math. Soc. 13 (2000), no. 3, 481--515 (electronic). MR1758751 (2001g:05103)
- bibitem{CL1995}
O. Costin, J. Lebowitz, {Gaussian fluctuations in random matrices.
} {em Phys. Rev. Lett. }, (1995) {bf 75} (1), 69-72.
- Deift, P. A. Orthogonal polynomials and random matrices: a Riemann-Hilbert
York; American Mathematical Society, Providence, RI, 1999. viii+273 pp. ISBN: 0-9658703-2-4; 0-8218-2695-6 MR1677884 (2000g:47048)
- Ercolani, N. M.; McLaughlin, K. D. T.-R. Asymptotics of the partition function for random matrices via
Int. Math. Res. Not. 2003, no. 14, 755--820. MR1953782 (2005f:82048)
- Goodman, N. R. Statistical analysis based on a certain multivariate complex Gaussian
Ann. Math. Statist. 34 1963 152--177. MR0145618 (26 #3148a)
- Götze, Friedrich; Tikhomirov, Alexander. The rate of convergence for spectra of GUE and LUE matrix
Cent. Eur. J. Math. 3 (2005), no. 4, 666--704 (electronic). MR2171668 (2006j:60022)
- Gustavsson, Jonas. Gaussian fluctuations of eigenvalues in the GUE.
Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 2, 151--178. MR2124079 (2005k:60074)
- Johansson, Kurt. Shape fluctuations and random matrices.
Comm. Math. Phys. 209 (2000), no. 2, 437--476. MR1737991 (2001h:60177)
- Khatri, C. G. Classical statistical analysis based on a certain multivariate complex
Ann. Math. Statist. 36 1965 98--114. MR0192598 (33 #823)
- König, Wolfgang. Orthogonal polynomial ensembles in probability theory.
Probab. Surv. 2 (2005), 385--447 (electronic). MR2203677
- Marv cenko, V. A.; Pastur, L. A. Distribution of eigenvalues in certain sets of random matrices.
(Russian) Mat. Sb. (N.S.) 72 (114) 1967 507--536. MR0208649 (34 #8458)
- Olver, Frank W. J. Asymptotics and special functions.
AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997. xviii+572 pp. ISBN: 1-56881-069-5 MR1429619 (97i:41001)
- Soshnikov, Alexander B. Gaussian fluctuation for the number of particles in Airy, Bessel, sine,
J. Statist. Phys. 100 (2000), no. 3-4, 491--522. MR1788476 (2001m:82006)
-
M. Vanlessen, Strong asymptotics of Laguerre-type orthogonal
polynomials and applications in random matrix theory.
arXiv:math.CA/0504604 v2 (2005).
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|