|
|
|
| | | | | |
|
|
|
|
|
Multi-dimensional Gaussian fluctuations on the Poisson space
|
Peccati Giovanni, Université du Luxembourg Cengbo Zheng, Université Paris Ouest, Nanterre la Défense |
Abstract
We study multi-dimensional normal approximations on the Poisson space by means of Malliavin calculus, Stein's method and probabilistic interpolations. Our results yield new multi-dimensional central limit theorems for multiple integrals with respect to Poisson measures -- thus significantly extending previous works by Peccati, Solé, Taqqu and Utzet. Several explicit examples (including in particular vectors of linear and non-linear functionals of Ornstein-Uhlenbeck Lévy processes) are discussed in detail.
|
Full text: PDF
Pages: 1487-1527
Published on: October 15, 2010
|
Bibliography
- A. D. Barbour. Stein's method for diffusion
approximations. Probab. Theory Related Fields 84 (1990) ,
297-322. Math.
Review 91d:60081
- O.E. Barndorff-Nielsen
and N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in
financial economics. J. R. Statist.
Soc. B 63 (2001) , 167--241. Math. Review 2002c:62127
- P. De Blasi, G. Peccati, and I. Pr__nster. Asymptotics for posterior hazards. Ann. Statist 37 (2009) , 1906--1945. Math. Review 2010k:62189
- S. Chatterjee. Chaos,
concentration, and multiple valleys. Preprint (2009)
- S. Chatterjee and E. Meckes. Multivariate normal approximation using
exchangeable pairs. Preprint (2009) Math. Review 2010c:60072
- F. Götze. On the rate of
convergence in the multivariate CLT. Ann.
Probab 19
(1991) , 724--739. Math. Review 92g:60028
- Y. Kabanov. Extended
stochastic integrals. Teor. Veroyatn. Primen. 20 (1975) ,
725--737. Math.
Review 53 #1733
- P. Malliavin. Stochastic Analysis (1997) , Springer-Verlag, Berlin, Heidlelberg, New York. Math. Review 99b:60073
- I. Nourdin and G. Peccati. Stein's method on Wiener chaos. Prob. Theory Related Fields 145 (2009) ,
75--118. Math.
Review 2010i:60087
- I. Nourdin, G. Peccati, and G. Reinert.
Invariance principles for homogeneous sums: Universality of Gaussian
Wiener chaos. Ann. Probab. 38
(2010), 1947--1985
- I. Nourdin, G. Peccati, and A. Réveillac.
Multivariate normal approximation using Stein's method and Malliavin calculus. Ann. Inst. H. Poincar__ Probab. Statist. 46 (2010) , 45-58.
- D. Nualart. The Malliavin
calculus and related topics (2nd edition) (2006) ,
Springer-Verlag, Berlin.
- D. Nualart and S. Ortiz-Latorre. Central limit theorems for multiple
stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (2008) ,
614--628. Math.
Review 2009h:60053
- D. Nualart and G. Peccati. Central limit theorems for sequences of
multiple stochastic integrals. Ann. Probab. 33
(2005) , 177--193. Math. Review 2005k:60077
- D. Nualart and J. Vives. Anticipative calculus for the Poisson process
based on the Fock space. Séminaire de Probabilités
XXIV LNM 1426 (1990) ,154--165. Springer, Berlin. Math. Review 92i:60109
- G. Peccati and I. Prünster. Linear and quadratic functionals
of random hazard rates: an asymptotic analysis. Ann. Appl. Probab. 18 (2008) ,
1910--1943. Math.
Review 2010b:60146
- G. Peccati, J.L. Solé, M.S. Taqqu, and F. Utzet. Stein's method and
normal approximation of Poisson functionals. Ann. Probab.
38 (2010) ,
443--478.
- G. Peccati and M.S. Taqqu. Central limit theorems for double Poisson
integrals. Bernoulli 14 (2008) ,
791--821.
- G. Peccati and M.S. Taqqu. Wiener
chaos: moments, cumulants and diagrams. A survey
with computer implementation (2010) , Bocconi & Springer Series . Spriinger-Verlag,
Berlin.
- G. Peccati and C.A.
Tudor. Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités
XXXVIII. LNM 1857 (2005)
247--262. Springer, Berlin. Math. Review 2006i:60071
- J. Picard. Formules de dualités sur l'espace de Poisson. Ann. Inst. H. Poincaré B. 32 (1996) ,
509--548. Math.
Review 98c:60055
- N. Privault. Stochastic Analysis in Discrete and
Continuous Settings: With Normal Martingales (2009)
, Springer, Berlin .
- G. Reinert and A. Rollin.
Multivariate normal approximation with Stein's method of exchangeable
pairs under a general linearity condition. Ann. Probab. 37 (2009) , 2150--2173.
- D. Surgailis. On multiple
Poisson stochastic integrals and associated Markov semigroups.
Probab. Math. Stat. 3 (1984) , 217--239. Math. Review 86k:60098
- D. Surgailis. CLTs for polynomials of linear sequences: Diagram
formulae with illustrations. Theory
and applications of long range dependence (2003) ,
111--127. Birkhäuser Boston, MA,
- M. Talagrand. Spin Glasses: a Challange
for Mathematicians. Cavity and Mean fields (2003) Springer, Berlin. Math. Review 2005m:60117
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|