![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Conditional limit theorems for ordered random walks
|
Denis E Denisov, Cardiff University Vitali Wachtel, University of Munich |
Abstract
In a recent paper of Eichelsbacher and Koenig (2008) the model of ordered random walks has been considered.
There it has been shown that, under certain moment conditions, one can construct a k-dimensional random walk conditioned
to stay in a strict order at all times. Moreover, they have shown that the rescaled random walk converges to the
Dyson Brownian motion. In the present paper we find the optimal moment assumptions for the construction
proposed by Eichelsbacher and Koenig, and generalise the limit theorem for this conditional process.
|
Full text: PDF
Pages: 292-322
Published on: April 8, 2010
|
Bibliography
-
Baik, J. and Suidan, T.
Random matrix central limit theorems for nonintersecting random walks.
Ann. Probab. 35 (2007), 1807--1834.
Math. Review 2009i:60038
-
Bertoin, J. and Doney, R.A. On conditioning a random walk to stay nonnegative.
Ann. Probab. 22 (1994), 2152--2167.
Math. Review
96b:60168
-
Bodineau, T. and Martin, J.
A universality property for last-passage percolation paths close to the axis .
Electron. Comm. in Probab. 10 (2005), 105--112.
Math. Review
2006a:60189
-
Borisov, I.S.
On the question of the rate of convergence in the Donsker--Prokhorov invariance principle.
Theory Probab. Appl. 28 (1983),388--392.
Math. Review
84g:60061
-
Borovkov, A.A.
Notes on inequalities for sums of independent random variables.
Theory Probab. Appl. 17 (1972), 556--557.
Math. Review
46 #8297
-
Bryn-Jones, A. and Doney, R.A.
A functional limit theorem for random walk conditioned to stay non-negative.
J. London Math. Soc. (2) 74 2006, 244--258.
Math. Review
2007k:60093
-
Dyson F.J.
A Brownian-motion model for the eigenvalues of a random matrix.
J. Math. Phys 3 (1962), 1191--1198.
Math. Review
26 #5904
-
Eichelsbacher, P. and König, W.
Ordered random walks.
Electron. J. Probab. 13, (2008) 1307--1336.
Math. Review
2010b:60134
-
Grabiner, D.J.
Brownian motion in a Weyl chamber, non-colliding particles, and random matrices.
Ann. Inst. H. Poincare Probab. Statist., 35(2) (1999), 177--204.
Math. Review
2000i:60091
-
König, W., O'Connell, N. and Roch, S.
Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles.
Electron. J. Probab. 7, (2002), 1--24.
Math. Review
2003e:60174
-
König, W.
Orthogonal polynomial ensembles in probability theory.
Probab. Surv. 2 (2005), 385--447.
Math. Review
2007e:60007
-
König, W and Schmid, P.
Random walks conditioned to stay in Weyl chambers of type C and D.
arXiv:0911.0631 (2009).
-
Major, P.
The approximation of partial sums of rv's.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 35 (1976), 213--220.
Math. Review
54 #3823
-
Nagaev, S.V.
Large deviations of sums of independent random variables.
Ann. Probab. 7 (1979), 745--789.
Math. Review
80i:60032
-
O'Connell, N. and Yor, M.
A representation for non-colliding random walks.
Elect. Comm. Probab. 7 (2002), 1--12.
Math. Review
2003e:60189
-
Puchala, Z, Rolski, T.
The exact asymptotic of the collision time tail distribution for independent Brownian particles with different drifts.
Probab. Theory Related Fields 142 (2008), 595--617.
Math. Review
2009i:60145
-
Schapira, B.
Random walk on a building of type $tilde{A}_r$ and Brownian motion on a Weyl chamber.
Ann. Inst. H. Poincare Probab. Statist. 45 (2009), 289-301.
Math. Review
2521404
-
Varopoulos, N.Th.
Potential theory in conical domains.
Math. Proc. Camb. Phil. Soc. 125 (1999), 335--384.
Math. Review
99i:60145
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|