  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
A functional approach for random walks in random sceneries	   
  
	 | 
  
 
	  
		 
			
			   
Clement  Dombry, Universite de Poitiers Nadine  Guillotin-Plantard, Université Lyon Claude Bernard 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	A functional approach for the study of the random walks in random sceneries (RWRS) is proposed. Under fairly general assumptions on the random walk and on the random scenery, functional limit theorems are proved. The method allows to study separately the convergence of the walk and of the scenery: on the one hand, a general criterion for the convergence of the local time of the walk is provided, on the other hand, the convergence of the random measures associated with the scenery is studied. This functional approach is robust enough to recover many of the known results on RWRS as well as new ones, including the case of many walkers evolving in the same scenery. 
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 1495-1512
  Published on: July 2, 2009
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
	- Billingsley, Patrick. Convergence of
	probability measures. John Wiley & Sons, Inc., New
	York-London-Sydney 1968 xii+253 pp. MR0233396
	(38 #1718)
	
 - Bolthausen, Erwin. A central limit theorem
	for two-dimensional random walks in random sceneries. Ann.
	Probab. 17 (1989), no. 1, 108--115. MR0972774
	(90h:60020)
	
 - Borodin, A. N. Limit theorems for sums of
	independent random variables defined on a transient random walk.
	(Russian) Investigations in the theory of probability distributions,
	IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
	(LOMI) 85 (1979), 17--29, 237, 244. MR0535455
	(80j:60029)
	
 - Borodin, A. N. Limit theorems for sums of
	independent random variables defined on a recurrent random walk.
	(Russian) Teor. Veroyatnost. i Primenen. 28 (1983),
	no. 1, 98--114. MR0691470
	(84g:60033)
	
 - Cadre, B. Etude de convergence en loi de
	fonctionnelles de processus: Formes quadratiques ou multilinéaires
	aléatoires, Temps locaux d'intersection de marches
	aléatoires, Théorème central limite presque
	sûr. (1995) PHD Thesis, Université Rennes 1.
	
 - Chen, X. ; Khoshnevisan, D. From charged
	polymers to random walk in random scenery. (2009) To appear in
	Proceedings of the Third Erich L. Lehmann Symposium.
	
 - Chen, Xia; Li, Wenbo V.
	Large and moderate deviations for intersection local times. Probab.
	Theory Related Fields 128 (2004), no. 2,
	213--254. MR2031226
	(2005m:60175)
	
 - Cohen, S.; Dombry, C. Convergence of dependent walks
	in a random scenery to fBm-local time fractional stable motions.
	(2009) To appear in Journal of Mathematics of Kyoto University.
	
 - Cohen, Serge; Samorodnitsky,
	Gennady. Random rewards, fractional Brownian local times
	and stable self-similar processes. Ann. Appl. Probab. 16
	(2006), no. 3, 1432--1461. MR2260069
	(2008b:60080)
	
 - Dobrushin, R. L.; Major, P.
	Non-central limit theorems for nonlinear functionals of Gaussian
	fields. Z. Wahrsch. Verw. Gebiete 50 (1979),
	no. 1, 27--52. MR0550122
	(81i:60019)
	
 - Dombry,C. Convergence to stable noise and
	applications. (2009) Preprint.
	
 - Dombry, C.; Guillotin-Plantard, N. Discrete
	approximation of a stable self-similar stationary increments
	process. (2009) Bernoulli, Vol. 15, No 1, 195--222. 
	
	
 - Guillotin-Plantard, N.; Le Ny, A. Transient random
	walks on 2d-oriented lattices. (2007) Theory of Probability and
	Its Applications (TVP), Vol. 52, No 4, 815—826.
	
 - Guillotin-Plantard, Nadine;
	Le Ny, Arnaud. A functional limit
	theorem for a 2D-random walk with dependent marginals. Electron.
	Commun. Probab. 13 (2008), 337--351. MR2415142
	(2009e:60079)
	
 - Guillotin-Plantard, N.; Prieur, C. Central limit
	theorem for sampled sums of dependent random variables. (2009) To
	appear in ESAIM P&S.
	
 - Guillotin-Plantard, N.; Prieur, C. Limit theorem for
	random walk in weakly dependent random scenery. (2009) Preprint.
	
 - Kesten, H.; Spitzer, F. A
	limit theorem related to a new class of self-similar processes. Z.
	Wahrsch. Verw. Gebiete 50 (1979), no. 1,
	5--25. MR0550121
	(82a:60149)
	
 - Lang, Reinhard; Nguyen, Xuan-Xanh.
	Strongly correlated random fields as observed by a random walker. Z.
	Wahrsch. Verw. Gebiete 64 (1983), no. 3,
	327--340. MR0716490
	(86a:60046)
	
 - Le Borgne, Stéphane. Exemples de
	systèmes dynamiques quasi-hyperboliques à
	décorrélations lentes. (French) [Examples of
	quasi-hyperbolic dynamical systems with slow decay of correlations]
	C. R. Math. Acad. Sci. Paris 343 (2006),
	no. 2, 125--128. MR2243306
	(2007f:37041)
	
 - Ledoux, Michel; Talagrand, Michel.
	Probability in Banach spaces. Isoperimetry and processes. Ergebnisse
	der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
	and Related Areas (3)], 23. Springer-Verlag, Berlin, 1991.
	xii+480 pp. ISBN: 3-540-52013-9 MR1102015
	(93c:60001)
	
 - Maejima, Makoto. Limit theorems related to a
	class of operator-self-similar processes. Nagoya Math. J.
	142 (1996), 161--181. MR1399472
	(97g:60033)
	
 - Nualart, David. Stochastic integration with
	respect to fractional Brownian motion and applications. Stochastic
	models (Mexico City, 2002), 3--39, Contemp. Math., 336, Amer.
	Math. Soc., Providence, RI, 2003. MR2037156
	(2004m:60119)
	
 - Nualart, David. The Malliavin calculus and
	related topics. Second edition. Probability and its Applications
	(New York). Springer-Verlag, Berlin, 2006. xiv+382 pp.
	ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233
	(2006j:60004) 
	
 - Pène, F. Transient random walk in $Z^2$ with
	stationary orientations. (2007) To appear in ESAIM P&S.
	
 - Pipiras, Vladas; Taqqu, Murad S.
	Integration questions related to fractional Brownian motion. Probab.
	Theory Related Fields 118 (2000), no. 2,
	251--291. MR1790083
	(2002c:60091)
	
 - Wang, Wensheng. Weak
	convergence to fractional Brownian motion in Brownian scenery.
	Probab. Theory Related
	Fields 126
	(2003), no. 2,
	203--220. MR1990054
	(2004d:60265)
  
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 	 | 
	 |