[1] Dobruv sin, R. L. Limit theorems for
a Markov chain of two states. Izvestiya Akad. Nauk SSSR. Ser. Mat.
17, (1953). 291--330.
MR0058150
[2] Dobruv
sin, R. L. Central limit theorems for non-stationary Markov chains I, II. Theory of Probab. and
its Appl. 1, (1956), 65-80, 329-383, MR0086436
[3] Gordin,
M. I. The central limit theorem for stationary
processes. (Russian) Soviet Math. Dokl.
10, (1969)
1174-1176, MR0251785
[4] Gudinas,
P. P.. An
invariance principle for inhomogeneous Markov chains. Lithuanian Math. J. 17, (1977), 184-192, MR0488304
[5] Hall, P.; Heyde, C. C. Martingale limit theory and
its application. Probability and Mathematical Statistics.
Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York-London, (1980).
xii+308 pp. ISBN: 0-12-319350-8 MR0624435
[6] Hanen,
Albert. Théorèmes limites
pour une suite de chaînes
de Markov. (French) Ann.
Inst. H. Poincaré 18, (1963)
197--301 (1963). MR0168017
[7] Isaacson, Dean L.; Madsen, Richard W. Markov chains. Theory and Applications. Wiley Series in
Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney,
(1976). viii+256 pp. MR0407991
[8] Iosifescu,
Marius. Finite Markov processes and their
applications. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons, Ltd., Chichester; Editura Tehnicu a, Bucharest, (1980).
295 pp. ISBN: 0-471-27677-4 MR0587116
[9] Iosifescu,
M.;
Theodorescu, R. Random processes and learning.
Die Grundlehren der mathematischen Wissenschaften,
Band 150. Springer-Verlag, New York, (1969). x+304 pp. MR0293704
[10] Kifer,
Yuri. Limit theorems for random transformations and processes in
random environments. Trans. Amer. Math. Soc. 350, (1998), no.
4, 1481--1518. MR1451607
[11] Kipnis,
C.;
Varadhan, S. R. S.
Central limit theorem for additive functionals of
reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104, (1986), no. 1, 1--19. MR0834478
[12] Pinsky,
Mark A.. Lectures
on random evolution. World Scientific Publishing Co., Inc., River Edge, NJ, (1991).
x+136 pp. ISBN: 981-02-0559-7 MR1143780
[13] Sarymsakov,
T. A. Inhomogeneous Markov chains. (Russian) Theor. Probability Appl. 6, (1961) 178--185.
MR0203813
[14] Seneta,
E.
On the historical development of the theory of finite inhomogeneous Markov
chains. Proc. Cambridge
Philos. Soc. 74, (1973), 507--513. MR0331522
[15] Seneta,
E.
Nonnegative matrices and Markov chains. Second edition.
Springer Series in Statistics. Springer-Verlag, New York, 1981. xiii+279
pp. ISBN: 0-387-90598-7 MR0719544
[16] Statuljaviv_cus,
V. A. Limiit theorems for sums of random
variables that are connected in a Markov chain. I, II, III.
(Russian) Litovsk. Mat. Sb. 9 (1969), 345-362; ibid. 9 (1969), 635-672; ibid. 10 (1969) 161—169 MR0266281
[17] Varadhan, S. R. S. Probability theory.
Courant Lecture Notes in Mathematics, 7. New York University, Courant
Institute of Mathematical Sciences, New York;
American Mathematical Society, Providence,
RI, (2001). viii+167 pp. ISBN: 0-8218-2852-5 MR1852999
[18] Winkler, Gerhard. Image
analysis, random fields and dynamic Monte Carlo
methods. A mathematical introduction. Applications of Mathematics (New
York), 27. Springer-Verlag, Berlin, (1995). xiv+324
pp. ISBN: 3-540-57069-1 MR1316400
[19] Wu, Wei Biao; Woodroofe, Michael. Martingale
approximations for sums of stationary processes. Ann. Probab. 32, (2004), no. 2, 1674--1690. MR2060314