|
|
|
| | | | | |
|
|
|
|
|
A Stochastic Fixed Point Equation Related to Weighted Branching with Deterministic Weights
|
Gerold Alsmeyer, Inst. Math. Statistics, Dept. Math. and Computer Science, University of Münster Uwe Rösler, Math. Seminar, University of Kiel |
Abstract
For real numbers $C,T_{1},T_{2},...$ we find all solutions
$mu$ to the
stochastic fixed point equation $Weqdistsum_{jge 1}T_{j}W_{j}+C$,
where $W,W_{1},W_{2},...$ are independent real-valued random variables with
distribution $mu$ and $eqdist$ means equality in distribution. All solutions
are
infinitely divisible. The set of solutions depends on the closed multiplicative
subgroup of ${Bbb R}_{*}={Bbb R}backslash{0}$ generated by the $T_{j}$.
If this group
is continuous, i.e. ${Bbb R}_{*}$ itself or the positive halfline ${BbbR}_{+}$,
then
all nontrivial fixed points are stable laws. In the remaining (discrete)
cases
further periodic solutions arise. A key observation is that the L'evy measure
of
any fixed point is harmonic with respect to $Lambda=sum_{jge 1}delta_{T_{j}}$,
i.e. $Gamma=GammastarLambda$, where $star$ means multiplicative convolution.
This will enable us to apply the powerful Choquet-Deny theorem.
|
Full text: PDF
Pages: 27-56
Published on: January 26, 2006
|
Bibliography
- Arbeiter, Matthias. Random recursive construction
of self-similar fractal measures. The noncompact case. Probab. Theory
Related Fields 88 (1991), no. 4, 497--520.
MR1105715
(92m:60040)
- Biggins, J. D. Uniform convergence of martingales in
the branching random walk. Ann. Probab. 20 (1992),
no. 1, 137--151.
MR1143415
(93b:60094)
- Biggins, J. D.; Kyprianou, A. E. Seneta-Heyde
norming in the branching random walk. Ann. Probab. 25
(1997), no. 1, 337--360.
MR1428512
(98a:60118)
- Burton, Robert M.; Rösler, Uwe
. An $Lsb 2$ convergence theorem for random affine mappings. J. Appl.
Probab. 32 (1995), no. 1, 183--192.
MR1316801
(96b:60011)
- Caliebe, Amke. Symmetric fixed points of a smoothing
transformation. Adv. in Appl. Probab. 35 (2003),
no. 2, 377--394.
MR1970480
(2004f:60036)
- Choquet, Gustave; Deny, Jacques. Sur
l'équation de convolution $µ=µ*sigma $. (French)
C. R. Acad. Sci. Paris 250 1960 799--801.
MR0119041
(22 #9808)
- Chow, Yuan Shih; Teicher, Henry. Probability
theory. Independence, interchangeability, martingales. Third edition. Springer
Texts in Statistics. Springer-Verlag, New York, 1997. xxii+488
pp. ISBN: 0-387-98228-0
MR1476912
(98e:60003)
- Davies, Laurie. A theorem of Deny with applications
to characterization problems. Analytical methods in probability theory
(Oberwolfach, 1980), pp. 35--41, Lecture Notes in Math., 861,
Springer, Berlin-New York, 1981.
MR0655258
(84h:62024)
- Davies, Laurie; Shimizu, Ryoichi.
On identically distributed linear statistics. Ann. Inst. Statist. Math.
28 (1976), no. 3, 469--489.
MR0431467
(55 #4465)
- Dufresne, Daniel. The distribution of a perpetuity,
with applications to risk theory and pension funding. Scand. Actuar.
J. 1990, no. 1-2, 39--79.
MR1129194
(92i:62195)
- Durrett, Richard; Liggett, Thomas M.
Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete
64 (1983), no. 3, 275--301.
MR0716487
(85e:60059)
- Embrechts, Paul; Goldie, Charles M.
Perpetuities and random equations. Asymptotic statistics (Prague,
1993), 75--86, Contrib. Statist., Physica, Heidelberg,
1994.
MR1311930
(95m:60093)
- Feller, William. An introduction to probability theory
and its applications. Vol. II. Second edition John Wiley & Sons, Inc.,
New York-London-Sydney 1971 xxiv+669 pp.
MR0270403
(42 #5292)
- Gnedenko, B. W.; Kolmogorov, A. N.
Grenzverteilungen von Summen unabhängiger Zufallsgrössen. (German)
Wissenschaftliche Bearbeitung der deutschen Ausgabe: Prof. Dr. Josef Heinhold.
Mathematische Lehrbücher und Monographien, II. Abt., Bd. IX Akademie-Verlag,
Berlin 1959 viii+279 pp.
MR0107295
(21 #6020)
- Graf, Siegfried. Statistically self-similar fractals.
Probab. Theory Related Fields 74 (1987), no.
3, 357--392.
MR0873885
(88c:60038)
- Guivarc'h, Yves. Sur une extension de la notion de
loi semi-stable. (French) [On an extension of the notion of semistable law]
Ann. Inst. H. Poincaré Probab. Statist. 26
(1990), no. 2, 261--285.
MR1063751
(91i:60141)
- Johansen, S. An application of extreme point methods
to the representation of infinitely divisible distributions. Z. Wahrscheinlichkeitstheorie
und Verw. Gebiete 5 1966 304--316.
MR0203765
(34 #3613)
- Kahane, J.-P.; Peyrière, J.
Sur certaines martingales de Benoit Mandelbrot. Advances in Math.
22 (1976), no. 2, 131--145.
MR0431355
(55 #4355)
- Kesten, Harry. Random difference equations and renewal
theory for products of random matrices. Acta Math. 131
(1973), 207--248.
MR0440724
(55 #13595)
- Khintchine, A. Zur Theorie der unbeschränkt teilbaren
Verteilungsgesetze. (German) {it Rec. Math. Moscou, n. Ser.} 2
(1937), 79-117.
Zbl0016.4100
- Liu, Quansheng. Sur une équation fonctionnelle
et ses applications: une extension du théorème de Kesten-Stigum
concernant des processus de branchement. (French) [On a functional equation
and its applications: an extension of the Kesten-Stigum theorem on branching
processes] Adv. in Appl. Probab. 29 (1997), no.
2, 353--373.
MR1450934
(98j:60124)
- Liu, Quansheng. Fixed points of a generalized smoothing
transformation and applications to the branching random walk. Adv. in
Appl. Probab. 30 (1998), no. 1, 85--112.
MR1618888
(99f:60151)
- Mandelbrot, Benoit. Multiplications aléatoires
itérées et distributions invariantes par moyenne pondérée
aléatoire. C. R. Acad. Sci. Paris Sér. A 278
(1974), 289--292.
MR0431351
(55 #4352a)
- Rachev, S. T.; Rüschendorf, L.
Probability metrics and recursive algorithms. Adv. in Appl. Probab.
27 (1995), no. 3, 770--799.
MR1341885
(96m:60005)
- Ramachandran, B.; Lau, Ka-Sing;
Gu, Hua Min. On characteristic functions satisfying a functional
equation and related classes of simultaneous integral equations. Sankhy=a
Ser. A 50 (1988), no. 2, 190--198.
MR1056443
(91g:60023)
- Rösler, Uwe. A limit theorem for "Quicksort".
RAIRO Inform. Théor. Appl. 25 (1991),
no. 1, 85--100.
MR1104413
(92f:68028)
- Rösler, Uwe. A fixed point theorem for distributions.
Stochastic Process. Appl. 42 (1992), no. 2,
195--214.
MR1176497
(93k:60038)
- Rösler, Uwe. The weighted branching process.
Dynamics of complex and irregular systems (Bielefeld, 1991),
154--165, Bielefeld Encount. Math. Phys., VIII, World Sci. Publishing,
River Edge, NJ, 1993.
MR1340440
(96f:60148)
- Rösler, Uwe. A fixed point equation for distributions.
Report No. 98-7, Univ. Kiel (1998). Math. Review number not available.
- Rösler, U.; Rüschendorf, L.
The contraction method for recursive algorithms. Average-case analysis
of algorithms (Princeton, NJ, 1998). Algorithmica 29
(2001), no. 1-2, 3--33.
MR1887296
(2003c:68096)
- Shimizu, Ryoichi. Solution to a functional equation
and its application to some characterization problems. Sankhy=a Ser.
A 40 (1978), no. 4, 319--332.
MR0589287
(81j:60021)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|