![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Regularizing properties for transition semigroups and semilinear parabolic
equations in Banach spaces
|
Federica Masiero, Universita di Milano-Bicocca |
Abstract
We study regularizing properties for transition semigroups related to Ornstein
Uhlenbeck processes with values in a Banach space E which is continuously
and densely embedded in a real and separable Hilbert space $H$. Namely we
study conditions under which the transition semigroup maps continuous and
bounded functions into differentiable functions. Via a Girsanov type theorem
such properties extend to perturbed Ornstein Uhlenbeck processes. We apply the
results to solve in mild sense semilinear versions of Kolmogorov equations in
E.
|
Full text: PDF
Pages: 387-419
Published on: April 7, 2007
|
Bibliography
-
V. Bogachev. Gaussian measures.
Mathematical Surveys and Monograph 62, American Mathematical Society, Providence, RI, 1998.
Math. Review 2000a:60004
-
S. Bonaccorsi and M. Fuhrman.
Regularity results for infinite dimensional diffusions. A Malliavin calculus approach.
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), 35-45.
Math. Review 2001g:60139
-
Z. Brzezniak and S. Peszat.
Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process.
Studia Mathematica 137 (1999), 435-451.
Math. Review 2000m:60004
-
S. Cerrai.
Second order PDE's in finite and infinite
dimension, A probabilistic approach.
Lecture Notes in Mathematics 1762 Springer-Verlag, Berlin, 2001.
Math. Review 2002j:35327
-
M. G. Crandall, M. G. Ishii and P.-L. Lions.
User's guide to viscosity solutions of second order partial differential equations.
Bul. Amer. Math. Soc. 27 (1992), 1-67.
Math. Review 92j:35050
-
M. G. Crandall and P.-L Lions.
Viscosity solutions of Hamilton-Jacobi equations in Banach spaces.
Trends in the theory and practice f nonlinear analysis (Arlington, Tex.,1984), 115--119
North-Holland Math. Stud., 110 North-Holland, Amsterdam, (1985).
Math. Review number not available.
For the entire collection
Math. Review 87a:00035
-
M. G. Crandall and P.-L Lions.
Viscosity solutions of Hamilton-Jacobi equations in Banach spaces.
C. R. Acad. Sci. Paris Ser. I Math. 300 (1985), 67-70.
Math. Review 86a:49054
-
G. Da Prato and J. Zabczyk.
Stochastic equations in infinite dimensions.
Encyclopedia of Mathematics and its Applications 44 (1992), Cambridge University Press.
Math. Review 95g:60073
-
G. Da Prato and J. Zabczyk.
Ergodicity for infinite-dimensional systems.
London Mathematical Society Note Series 229
Cambridge University Press, Cambridge, (1996)
Math. Review 97k:60165
-
G. Da Prato and J. Zabczyk.
Second order partial differential equations in Hilbert spaces.
London Mathematical Society Note Series 293 Cambridge University Press, Cambridge, (2002).
Math. Review 2004e:47058"
-
M. Fuhrman and G. Tessitore.
Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control.
Ann. Probab. 30 (2002), 1397-1465.
Math. Review 2003d:60131"
-
D. Gatarek and B. Goldys.
On invariant measures for diffusions on Banach spaces.
Potential Anal. 7 (1997), 539--553.
Math. Review 98k:60102"
-
I. V. Girsanov.
On transforming of a class of stochastic processes by absolutely continuous change of measure, (in Russian).
Teor. Verojatnost. i Primenen. 5 (1960), 314--330.
Math. Review 0133152"
-
F. Gozzi.
Regularity of solutions of second order Hamilton-Jacobi equations in Hilbert spaces and applications to a control
problem.
Comm. Partial Differential Equations 20 (1995), 775--826.
Math. Review 96e:49006"
-
F. Gozzi, E. Rouy and A. Swiech.
Second order Hamilton-Jacobi equations in Hilbert spaces and stochastic boundary control,}
SIAM J. Control Optim. 38 (2000) no. 2, pp. 400-430
J. Theor. Prob. 4 (1991), 101--109.
Math. Review 2000m:49033"
-
F. Gozzi and A. Swiech.
Hamilton-Jacobi-Bellman equations for the optimal control of the Duncan-Mortensen-Zakai equation.
J. Funct. Anal. 172 (2000), 460--510.
Math. Review 2001d:49051"
-
P. L. Lions.
Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimension I. The case of bounded stochastic evolutions.
Acta Math. 161 (1988), 243--278.
Math. Review 90j:35029"
-
P. L. Lions.
Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimension III. Uniqueness of viscosity solutions for general second-order equations.
J. Funct. Anal. 86 (1989), 1--18.
Math. Review 91b:35011"
-
A. Lunardi.
Analytic semigroups and optimal regularity in parabolic problems. .
Progress in Nonlinear Differential Equations and their
Applications 16 Birkhauser Verlag, Basel, (1995).
Math. Review 96e:47039"
-
F. Masiero.
Semilinear Kolmogorov equations and applications to stochastic optimal control.
Appl. Math. Optim. 51 (2005), 201--250.
Math. Review 2005j:35104"
-
F. Masiero.
Stochastic optimal control problems and parabolic equations in Banach spaces.
preprint, Quad. 632-P Dip. Mat. Politecnico di Milano.
Math. Review number not available.
-
K. R. Parthasarathy.
Probability measures on metric spaces.
Probability and Mathematical Statistics Academic Press, Inc.,
New York-London (1967).
Math. Review 0226684"
-
A. Pazy.
Semigroups of linear operators and applications to partial differential equations.
Lecture Notes in Math. 1017 Springer, Berlin, (1983).
Math. Review 86b:47075"
-
S. Peszat and J. Zabczyk.
Strong Feller property and irreducibility for diffusions on Hilbert sapces.
Ann. Probab./i> 23 (1995), 157--172.
Math. Review 96f:60105"
-
H. Triebel.
Interpolation theory, function spaces, differential operators. , 18. 1978
North-Holland Mathematical Library. 18 North-Holland
Publishing Co., Amsterdam-New York, (1978).
Math. Review 80i:46032b
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|