 |
|
|
| | | | | |
|
|
|
|
|
Small Deviations of Gaussian Random Fields in Lq--Spaces
|
Mikhail Lifshits, St.Petersburg State University Werner Linde, FSU Jena Zhan Shi, Universite Paris VI |
Abstract
We investigate small deviation properties of Gaussian random
fields
in the space $L_q(R^N,mu)$ where $mu$ is an arbitrary
finite compactly
supported Borel measure. Of special interest are hereby ``thin"
measures $mu$, i.e., those which are singular with respect to
the $N$--dimensional Lebesgue measure; the so--called self--similar measures providing
a class of typical examples.
For a large class of random fields
(including, among others, fractional Brownian motions),
we describe the behavior of small deviation probabilities
via numerical characteristics of $mu$, called
mixed entropy, characterizing size and regularity of $mu$.
For the particularly interesting
case of self--similar measures $mu$, the asymptotic behavior of
the mixed entropy is evaluated explicitly. As a consequence, we get the
asymptotic of the small deviation for $N$--parameter fractional Brownian motions
with respect to $L_q(R^N,mu)$--norms.
While the upper estimates for the small
deviation probabilities are proved by purely probabilistic methods,
the lower bounds are established by analytic tools concerning
Kolmogorov and entropy numbers of H"older operators.
|
Full text: PDF
Pages: 1204-1233
Published on: December 8, 2006
|
Bibliography
- Anderson, T. W. The integral of a symmetric unimodal function over a symmetric convex
Proc. Amer. Math. Soc. 6, (1955). 170--176. MR0069229 (16,1005a)
- Carl, Bernd; Kyrezi, Ioanna; Pajor, Alain. Metric entropy of convex hulls in Banach spaces.
J. London Math. Soc. (2) 60 (1999), no. 3, 871--896. MR1753820 (2001c:46019)
- Carl, Bernd; Stephani, Irmtraud. Entropy, compactness and the approximation of operators.
Cambridge Tracts in Mathematics, 98. Cambridge University Press, Cambridge, 1990. x+277 pp. ISBN: 0-521-33011-4 MR1098497 (92e:47002)
- Falconer, K. J. The geometry of fractal sets.
Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. xiv+162 pp. ISBN: 0-521-25694-1; 0-521-33705-4 MR0867284 (88d:28001)
- Hutchinson, John E. Fractals and self-similarity.
Indiana Univ. Math. J. 30 (1981), no. 5, 713--747. MR0625600 (82h:49026)
- Lalley, Steven P. The packing and covering functions of some self-similar fractals.
Indiana Univ. Math. J. 37 (1988), no. 3, 699--710. MR0962930 (89h:28013)
- Lau, Ka-Sing; Wang, Jianrong. Mean quadratic variations and Fourier asymptotics of self-similar
Monatsh. Math. 115 (1993), no. 1-2, 99--132. MR1223247 (94g:42018)
- Ledoux, Michel. Isoperimetry and Gaussian analysis.
165--294, Lecture Notes in Math., 1648, Springer, Berlin, 1996. MR1600888 (99h:60002)
- Ledoux, Michel; Talagrand, Michel. Probability in Banach spaces.
Mathematics and Related Areas (3)], 23. Springer-Verlag, Berlin, 1991. xii+480 pp. ISBN: 3-540-52013-9 MR1102015 (93c:60001)
- W. V. Li, Small ball estimates for Gaussian Markov processes under $L_p$-norm. Stoch. Proc. Appl. 92 (2001), 87--102.
- Li, Wenbo V.; Linde, Werner. Approximation, metric entropy and small ball estimates for Gaussian
Ann. Probab. 27 (1999), no. 3, 1556--1578. MR1733160 (2001c:60059)
- Li, W. V.; Shao, Q.-M. Gaussian processes: inequalities, small ball probabilities and
533--597, Handbook of Statist., 19, North-Holland, Amsterdam, 2001. MR1861734
- Lifshits, M. A. Gaussian random functions.
Mathematics and its Applications, 322. Kluwer Academic Publishers, Dordrecht, 1995. xii+333 pp. ISBN: 0-7923-3385-3 MR1472736 (98k:60059)
- M. A. Lifshits,
Asymptotic behavior of small ball probabilities.
In: Probab. Theory and Math. Statist. Proc. VII International
Vilnius Conference, pp. 453--468.
VSP/TEV, Vilnius, 1999.
- Lifshits, Mikhail A.; Linde, Werner. Approximation and entropy numbers of Volterra operators with
Mem. Amer. Math. Soc. 157 (2002), no. 745, viii+87 pp. MR1895252 (2004g:47066)
- Lifshits, Mikhail A.; Linde, Werner. Small deviations of weighted fractional processes and average
Trans. Amer. Math. Soc. 357 (2005), no. 5, 2059--2079 (electronic). MR2115091 (2005m:60072)
- Lifshits, Mikhail A.; Linde, Werner; Shi, Zhan. Small deviations of Riemann-Liouville processes in $Lsb q$-spaces
Proc. London Math. Soc. (3) 92 (2006), no. 1, 224--250. MR2192391 (2006m:60053)
- Lifshits, Mikhail; Simon, Thomas. Small deviations for fractional stable processes.
Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 4, 725--752. MR2144231 (2006d:60081)
- M. A. Lifshits and B. S. Tsyrelson, Small ball deviations of Gaussian
fields. Theor. Probab. Appl. 31 (1986), 557--558.
- Linde, Werner. Kolmogorov numbers of Riemann-Liouville operators over small sets and
J. Approx. Theory 128 (2004), no. 2, 207--233. MR2068698 (2005c:47021)
- W. Linde,
Small ball problems and compactness of operators.
In: Mathematisches Forschungsinstitut Oberwolfach
Report No. 44/2003. Mini-Workshop: Small Deviation Problems for
Stochastic Processes and Related Topics.
- Linde, Werner; Shi, Zhan. Evaluating the small deviation probabilities for subordinated Lévy
Stochastic Process. Appl. 113 (2004), no. 2, 273--287. MR2087961 (2005h:60139)
- Mattila, Pertti. Geometry of sets and measures in Euclidean spaces.
Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. xii+343 pp. ISBN: 0-521-46576-1; 0-521-65595-1 MR1333890 (96h:28006)
- Naimark, K.; Solomyak, M.. The eigenvalue behaviour for the boundary value problems related to
Math. Res. Lett. 2 (1995), no. 3, 279--298. MR1338787 (97c:35150)
- Nazarov, A. I. Logarithmic asymptotics of small deviations for some Gaussian
(Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 311 (2004), Veroyatn. i Stat. 7, 190--213, 301; translation in J. Math. Sci. (N. Y.) 133 (2006), no. 3, 1314--1327 MR2092208 (2005j:60078)
- Nazarov, A. I.; Nikitin, Ya. Yu. Logarithmic asymptotics of small deviations in the $Lsb 2$-norm for
(Russian) Teor. Veroyatn. Primen. 49 (2004), no. 4, 695--711; translation in Theory Probab. Appl. 49 (2005), no. 4, 645--658 MR2142562 (2006b:60070)
- Olsen, L.. A multifractal formalism.
Adv. Math. 116 (1995), no. 1, 82--196. MR1361481 (97a:28006)
- Pesin, Yakov B. Dimension theory in dynamical systems.
Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1997. xii+304 pp. ISBN: 0-226-66221-7; 0-226-66222-5 MR1489237 (99b:58003)
- Pisier, Gilles. The volume of convex bodies and Banach space geometry.
Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge, 1989. xvi+250 pp. ISBN: 0-521-36465-5; 0-521-66635-X MR1036275 (91d:52005)
- Pitt, Loren D. Local times for Gaussian vector fields.
Indiana Univ. Math. J. 27 (1978), no. 2, 309--330. MR0471055 (57 #10796)
- Shao, Q.-M.; Wang, D.. Small ball probabilities of Gaussian fields.
Probab. Theory Related Fields 102 (1995), no. 4, 511--517. MR1346263 (96h:60069)
- Talagrand, M. New Gaussian estimates for enlarged balls.
Geom. Funct. Anal. 3 (1993), no. 5, 502--526. MR1233864 (94k:60004)
- Tsirelson, B. S. Stationary Gaussian processes with a compactly supported correlation
(Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 184 (1990), Issled. po Mat. Statist. 9, 279--288, 326; translation in J. Math. Sci. 68 (1994), no. 4, 597--603 MR1098709 (92g:60052)
- Xiao, Yimin. Hölder conditions for the local times and the Hausdorff measure of
Probab. Theory Related Fields 109 (1997), no. 1, 129--157. MR1469923 (98m:60060)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|