![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Estimates of Random Walk Exit Probabilities and Application to Loop-Erased Random Walk
|
Michael J. Kozdron, University of Regina, Canada Gregory F. Lawler, Cornell University, USA |
Abstract
We prove an estimate for the probability that a simple random walk in a simply connected subset A of Z2 starting on the boundary exits A at another specified boundary point. The estimates are uniform over all domains of a given inradius. We apply these estimates to prove a conjecture of S. Fomin in 2001 concerning a relationship between crossing probabilities of loop-erased random walk and Brownian motion.
|
Full text: PDF
Pages: 1442-1467
Published on: December 19, 2005
|
Bibliography
- Auer, P. Some hitting probabilities of random walks on Z2. In Limit Theorems in Probability and Statistics, volume 57 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Budapest, Hungary, 1990. MR1116776
- Bass, R.F. Probabilistic Techniques in Analysis. Springer-Verlag, New York, NY, 1995. MR1329542
- Duren, P.L. Univalent functions, volume 259 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, NY, 1983. MR0708494
- Fomin, S. Loop-erased walks and total positivity.
Trans. Amer. Math. Soc. 353 (2001), 3563-3583. MR1837248
- Fukai, Y. and Uchiyama, K. Potential kernel for two-dimensional random walk.
Ann. Probab. 24 (1996), 1979-1992. MR1415236
- Kenyon, R. The asymptotic determinant of the discrete Laplacian.
Acta Math. 185 (2000), 239-286. MR1819995
- Komlós, J., Major, P., and Tusnády, G. An approximation of partial sums of independent RV'-s, and the sample DF. I.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), 111-131. MR0375412
- Komlós, J., Major, P., and Tusnády, G. An approximation of partial sums of independent RV's, and the sample DF. II.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), 33-58. MR0402883
- Kozdron, M.J. Simple random walk excursion measure in the plane. Ph.D. dissertation, Duke University, Durham, NC, 2004. Math. Review number not available.
- Kozdron, M.J. On the scaling limit of simple random walk excursion measure in the plane. Preprint, 2005. Available online at arXiv:math.PR/0506337. Math. Review number not available.
- Lawler, G.F. Intersections of Random Walks. Birkhäuser, Boston, MA, 1991. MR1117680
- Lawler, G.F. Loop-erased random walk.
In Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, volume 44 of Progress in Probability, 197-217. Birkhäuser, Boston, MA, 1999. MR1703133
- Lawler, G.F. Conformally Invariant Processes in the Plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. MR2129588
- Lawler, G.F., Schramm, O., and Werner, W. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004), 939-995. MR2044671
- Schramm, O. and Sheffield, S. The harmonic explorer and its convergence to SLE(4). Preprint, 2003. Available online at arXiv:math.PR/0310210. Math. Review number not available.
- Smirnov, S. Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 239-244. MR1851632
- Zhan, D. Stochastic Loewner evolution in doubly connected domains.
Probab. Theory Related Fields 129 (2004), 340-380. MR2128237
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|