|
|
|
| | | | | |
|
|
|
|
|
Exponential estimates for stochastic convolutions in 2-smooth Banach spaces
|
Jan Seidler, Institute of Information Theory and Automation of the AS CR |
Abstract
Sharp constants in a (one-sided) Burkholder-Davis-Gundy
type estimate for stochastic integrals in a 2-smooth Banach space
are found. As a consequence, exponential tail estimates for stochastic
convolutions are obtained via Zygmund's extrapolation theorem.
|
Full text: PDF
Pages: 1556-1573
Published on: October 15, 2010
|
Bibliography
-
M.T. Barlow, M. Yor. Semi-martingale inequalities
via the Garsia-Rodemich-Rumsey lemma, and applications to local
times. J. Funct. Anal. 49 (1982), 198-229.
Math. Review 84f:60073
-
S. Blunck, L. Weis. Operator theoretic properties
of semigroups in terms of their generators. Studia Math.
146 (2001), 35-54.
Math. Review 2002b:47085
-
Z. Brzeźniak. On stochastic convolution in
Banach spaces and applications. Stochastics Stochastics
Rep. 61 (1997), 245-295.
Math. Review 1488138
-
Z. Brzeźniak. Some remarks on Itô and
Statonovich integration in 2-smooth Banach spaces.
Probabilistic methods in fluids, 48-69, World Sci.
Publ., River Edge 2003.
Math. Review 2005g:60085
-
Z. Brzeźniak, S. Peszat. Maximal inequalities
and exponential estimates for stochastic convolutions in
Banach spaces. Stochastic processes, physics and
geometry: new interplays, I (Leipzig, 1999), 55-64,
Amer. Math. Soc., Providence 2000.
Math. Review 2001k:60084
-
P.-L. Chow. Stochastic partial differential
equations. Chapman & Hall/CRC, Boca Raton 2007.
Math. Review 2008d:35243
-
G. Da Prato, J. Zabczyk. Stochastic equations
in infinite dimensions. Cambridge University Press, Cambridge
1992.
Math. Review 95g:60073
-
B. Davis. On the L$^p$ norms of stochastic integrals
and other martingales. Duke Math. J. 43 (1976),
697-704.
Math. Review 54 #6260
-
E. Dettweiler. Stochastic integral equations and
diffusions on Banach spaces. Probability theory on vector
spaces, III (Lublin, 1983), 9-45, Lecture Notes in Math.
1080, Springer, Berlin 1984.
Math. Review 0788000
-
E. Dettweiler. Stochastic integration relative to
Brownian motion on a general Banach space. Doğa Mat.
15 (1991), 58-97.
Math. Review 93b:60112
-
A.M. Fröhlich, L. Weis. $H^infty$ calculus and
dilations. Bull. Soc. Math. France 134 (2006), 487-508.
Math. Review 2009a:47091
-
E. Hausenblas, J. Seidler. Stochastic convolutions
driven by martingales: Maximal inequalities and exponential
integrability. Stoch. Anal. Appl. 26 (2008), 98-119.
Math. Review 2009a:60066
-
P. Hitczenko. On the behavior of the constant in a
decoupling inequality for martingales. Proc. Amer.
Math. Soc. 121 (1994), 253-258.
Math. Review 94g:60085
-
O. Kallenberg, R. Sztencel. Some dimension-free
features of vector-valued martingales. Probab. Theory
Related Fields 88 (1991), 215-247.
Math. Review 92h:60073
-
P.C. Kunstmann, L. Weis. Maximal $L_p$-regularity
for parabolic equations, Fourier multiplier theorems and
$H^infty$-functional calculus. Functional analytic methods
for evolution equations, 65-311, Lecture Notes in Math. 1855,
Springer, Berlin 2004.
Math. Review 2005m:47088
-
V. Linde, A. Pič. Mappings of Gaussian measures of
cylindrical sets in Banach spaces (Russian). Teor. Veroyatnost.
i Primenen. 19 (1974), 472-487.
Math. Review 50 #8672
-
A.L. Neidhardt. Stochastic integrals in
$2$-uniformly smooth Banach spaces. Ph.D. Thesis, University
of Wisconsin 1978.
Math. Review number not available.
-
M. Ondrejáat. Uniqueness for stochastic evolution
equations in Banach spaces. Dissertationes Math.
(Rozprawy Mat.) 426 (2004), 63pp.
Math. Review 2005e:60133
-
M. Ondrejáat. Personal communication.
Math. Review number not available.
-
C. Michels: $Lambda(p)$-sets and the limit order of
operator ideals. Math. Nachr. 239/240 (2002),
170-176.
Math. Review 2003d:47027
-
A. Pietsch. Operator ideals. VEB Deutscher Verlag
der Wissenschaften, Berlin 1978
Math. Review 81a:47002
-
I. Pinelis. Optimum bounds for the distributions of
martingales in Banach spaces. Ann. Probab. 22
(1994), 1679-1706.
Math. Review 96b:60010
-
Y.-F. Ren, H.-Y. Liang. On the best constant in
Marcinkiewicz-Zygmund inequality. Statist. Probab.
Lett. 53 (2001), 227-233.
Math. Review 2002b:60026
-
J. Seidler, T. Sobukawa. Exponential integrability
of stochastic convolutions. J. London Math. Soc. (2)
67 (2003), 245-258.
Math. Review 2003i:60109
-
M. Veraar, L. Weis. A note on maximal estimates
for stochastic convolutions. Preprint arXiv:1004.5061.
Math. Review number not available.
-
A. Zygmund. Trigonometric series, Vol. II.
Cambridge University Press, New York 1959.
Math. Review 21 #6498
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|