![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Markov Processes with Identical Bridges
|
P. J. Fitzsimmons, University of California, San Diego |
Abstract
Let X and Y be time-homogeneous Markov processes with common state space
E, and assume that the transition kernels of X and Y admit densities with
respect to suitable reference measures. We show that if there is a time t>0
such that, for each x in E, the conditional distribution of [X(s), 0
<= s
<=
t], given X(0) = x = X(t), coincides with the conditional distribution of
[Y(s), 0
<= s
<=
t], given Y(0) = x = Y(t), then the infinitesimal generators of X and Y are
related by LY(f)=p^{-1}LX(p*f)-lambda*f, where p is an eigenfunction
of LX with real eigenvalue lambda. Under an additional continuity
hypothesis, the same conclusion obtains assuming merely that X and Y share a
"bridge" law for one triple (x,t,y). Our work extends and clarifies a
recent result of I. Benjamini and S. Lee.
|
Full text: PDF
Pages: 1-12
Published on: July 5, 1998
|
Bibliography
-
Benjamini, I. and Lee S.: Conditioned diffusions which are Brownian
motions. J.
Theor. Probab. 10 (1997) 733--736.
MR 98e:60131
-
Billingsley, P.: Convergence of Probability Measures. Wiley, New
York, 1968.
MR 38 #1718
-
E. B. Dynkin: Minimal excessive measures and functions. Trans. Amer.
Math. Soc.
258 (1980) 217--244.
MR 81a:60086
-
Fitzsimmons, P. J., Pitman, J. and Yor, M.: Markovian bridges:
construction, Palm
interpretation, and splicing. In Seminar on Stochastic Processes,
1992, pp.
101--133. Birkhäuser, Boston, 1993.
MR 95i:60070
-
Föllmer, H.: Martin boundaries on Wiener space. In Diffusion
Processes and Related
Problems in Analysis, Vol. I, pp. 3--16. Birkhäuser, Boston, 1990.
MR 93d:60121
-
Getoor, R.K.: Markov processes: Ray processes and right processes.
Lecture Notes
in Math. 440. Springer-Verlag, Berlin-New York, 1975.
MR 53 #9390
-
Getoor, R.K. and Sharpe, M.J.: Excursions of dual processes. Adv.
Math. 45
(1982) 259--309.
MR 84h:60129
-
Getoor, R.K. and Sharpe, M.J.: Naturality, standardness, and weak duality
for Markov
processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 67
(1984) 1--62.
MR 86f:60093
-
Kunita, H. and Watanabe, T.: Markov processes and Martin boundaries, I.
Illinois J. Math. 9 (1965) 485--526.
MR 31 #5240
-
Kunita, H.: Absolute continuity of Markov processes. In
Séminaire de
Probabilités X. pp. 44--77. Lecture Notes in
Math. 511, Springer, Berlin, 1976.
MR 55 #11400
-
Sharpe, M.J.: General Theory of Markov Processes. Academic Press,
San Diego, 1988.
MR 89m:60169
-
R. Wittmann: Natural densities of Markov transition probabilities.
Prob. Theor. Rel. Fields 73 (1986) 1--10.
MR 87m:60170
-
J.-A. Yan: A formula for densities of transition functions.
In Séminaire de Probabilités XXII, pp. 92--100.
Lecture Notes in Math.
1321, Springer, Berlin, 1988.
MR 89m:60179
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|