![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part
|
Mohammud Foondun, University of Utah |
Abstract
We consider the Dirichlet form given by
begin{eqnarray*}
sE(f,f)&=&frac{1}{2}int_{bR^d}sum_{i,j=1}^d a_{ij}(x)frac{partial f(x)}{partial x_i} frac{partial f(x)}{partial x_j} dx
&+&int_{bR^dtimes bR^d} (f(y)-f(x))^2J(x,y)dxdy.
end{eqnarray*}
Under the assumption that the ${a_{ij}}$ are symmetric and uniformly elliptic and with suitable conditions on $J$, the nonlocal part, we obtain upper and lower bounds on the heat kernel of the Dirichlet form. We also prove a Harnack inequality and a regularity theorem for functions that are harmonic with respect to $sE$.
|
Full text: PDF
Pages: 314-340
Published on: February 2, 2009
|
Bibliography
- Bass, Richard F. Diffusions and elliptic operators.Probability and its Applications (New York). Springer-Verlag, New York, 1998. xiv+232 pp. ISBN: 0-387-98315-5 MR1483890 (99h:60136)
- M.T. Barlow, R.F. Bass, Z-Q. Chen, and M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. to appear in Transactions of A.M.S.
- M.T. Barlow, A. Grigory'an, and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. Preprint.
- Bass, Richard F.; Kassmann, Moritz. Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc. 357 (2005), no. 2, 837--850 (electronic). MR2095633 (2005i:60104)
- Bass, Richard F.; Levin, David A. Harnack inequalities for jump processes. Potential Anal. 17 (2002), no. 4, 375--388. MR1918242 (2003e:60194)
- Chen, Zhen-Qing; Kumagai, Takashi. Heat kernel estimates for stable-like processes on $d$-sets. Stochastic Process. Appl. 108 (2003), no. 1, 27--62. MR2008600 (2005d:60135)
- Chen, Zhen-Qing; Kumagai, Takashi. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 (2008), no. 1-2, 277--317. MR2357678
- Z.Q. Chen, P. Kim, and T. Kumagai. Weighted Poincare inequality and heat kernel estimates for finite range jump processes. preprint.
- Z.Q. Chen, P. Kim, and R. Song. Heat kernel estimates for Dirichlet fractional laplacian. preprint.
- Z.Q. Chen, P. Kim, and R. Song. Two-sided heat kernel estimates for censored stable-like processes. preprint.
- Carlen, E. A.; Kusuoka, S.; Stroock, D. W. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245--287. MR0898496 (88i:35066)
- Chen, Zhen-Qing; Song, Renming. Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312 (1998), no. 3, 465--501. MR1654824 (2000b:60179)
- Chen, Ya-Zhe; Wu, Lan-Cheng. Second order elliptic equations and elliptic systems.Translated from the 1991 Chinese original by Bei Hu.Translations of Mathematical Monographs, 174. American Mathematical Society, Providence, RI, 1998. xiv+246 pp. ISBN: 0-8218-0970-9 MR1616087 (99i:35016)
- Davies, E. B. Heat kernels and spectral theory.Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1989. x+197 pp. ISBN: 0-521-36136-2 MR0990239 (90e:35123)
- M. Foondun. Harmonic functions for a class of integro-differential operators. preprint.
- Fukushima, Masatoshi; Ōshima, Yōichi; Takeda, Masayoshi. Dirichlet forms and symmetric Markov processes.de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994. x+392 pp. ISBN: 3-11-011626-X MR1303354 (96f:60126)
- De Giorgi, Ennio. Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari.(Italian) Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 1957 25--43. MR0093649 (20 #172)
- M. Kassmann. The classical Harnack inequality fails for non-local operators. preprint.
- Kassmann, Moritz. On regularity for Beurling-Deny type Dirichlet forms. Potential Anal. 19 (2003), no. 1, 69--87. MR1962952 (2004a:31005)
- Krylov, N. V.; Safonov, M. V. An estimate for the probability of a diffusion process hitting a set of positive measure.(Russian) Dokl. Akad. Nauk SSSR 245 (1979), no. 1, 18--20. MR0525227 (80b:60101)
- Meyer, P. A. Renaissance, recollements, mélanges, ralentissement de processus de Markov.(French) Collection of articles dedicated to Marcel Brelot on the occasion of his 70th birthday. Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3-4, xxiii, 465--497. MR0415784 (54 #3862)
- Moser, Jürgen. On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 1961 577--591. MR0159138 (28 #2356)
- Moser, Jürgen. A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17 1964 101--134. MR0159139 (28 #2357)
- Nash, J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 1958 931--954. MR0100158 (20 #6592)
- Rao, Murali; Song, Renming; Vondraček, Zoran. Green function estimates and Harnack inequality for subordinate Brownian motions. Potential Anal. 25 (2006), no. 1, 1--27. MR2238934 (2008g:60235)
- Saloff-Coste, L.; Stroock, D. W. Opérateurs uniformément sous-elliptiques sur les groupes de Lie.(French) [Uniformly subelliptic operators on Lie groups] J. Funct. Anal. 98 (1991), no. 1, 97--121. MR1111195 (92k:58264)
- Song, Renming; Vondraček, Zoran. Harnack inequality for some discontinuous Markov processes with a diffusion part. Glas. Mat. Ser. III 40(60) (2005), no. 1, 177--187. MR2195869 (2008k:60181)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|