![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A Non-Skorohod Topology on the Skorohod Space
|
Adam Jakubowski, Nicholas Copernicus University |
Abstract
A new topology (called $S$) is defined on the space $D$ of functions
$x: [0,1] to R^1$ which are
right-continuous and admit limits from the left at each $t > 0$. Although
$S$ cannot be metricized, it is quite natural and shares many useful
properties with the traditional Skorohod's topologies $J_1$ and $M_1$. In
particular,
on the space $P(D)$ of laws of stochastic processes with trajectories
in $D$ the topology $S$ induces a sequential
topology for which both the direct and the converse Prohorov's theorems
are valid, the a.s. Skorohod representation for subsequences exists and
finite dimensional convergence outside a countable set holds.
|
Full text: PDF
Pages: 1-21
Published on: July 4, 1997
|
Bibliography
-
Dellacherie, C., Meyer, P.A. (1980) Probabilit'es et potentiel,
Chapters V-VIII, Hermann, Paris 1980.
Math. Review
link.
-
Engelking, R., General Topology, Helderman, Berlin 1989.
Math.
Review link.
-
Fernique, X., Processus lin'eaires, processus g'en'eralis'es, Ann.
Inst. Fourier (Grenoble), 17 (1967), 1-92.
Math. Review
link.
-
Fernique, X., Convergence en loi de variables al'etoires et de fonctions
al'etoires, propri'etes de compacit'e des lois, II, in: J. Az'ema,
P.A. Meyer, M. Yor, (Eds.) S'eminaire de
Probabilit'es XXVII, Lecture Notes in Math., 1557 , 216-232,
Springer, Berlin 1993.
Math. Review
link.
-
Jakubowski, A., The a.s. Skorohod representation for subsequences in
nonmetric spaces, Theory Probab. Appl., 42 (1997), 209-216,
(preprint).
Math. Review number not
available.
-
Jakubowski, A., Convergence in various topologies for stochastic integrals
driven by semimartingales, Ann. Probab., 24 (1996), 2141-2153.
Math. Review number not available.
-
Jakubowski, A., From convergence of functions to convergence of stochastic
processes. On Skorokhod's sequential approach to convergence in distribution.,
to appear in A Volume in Honour of A.V. Skorokhod, VSP 1997,
(preprint).
Math. Review number not available.
-
Jakubowski, A., M'emin, J., Pages, G., Convergence en loi des suites
d'int'egrales stochastiques sur l'espace $GD^1$ de Skorokhod,
Probab. Th. Rel. Fields, 81 (1989), 111-137.
Math. Review
link.
-
Kantorowich, L.V., Vulih, B.Z. & Pinsker, A.G., Functional Analysis
in Partially Ordered Spaces (in Russian), Gostekhizdat, Moscow
1950. Math. Review number not available.
-
Kisy'nski, J., Convergence du type L, Colloq. Math., 7 (1960),
205-211.
Math. Review
link.
-
Kurtz, T., Random time changes and convergence in distribution under the
Meyer-Zheng conditions, Ann. Probab., 19 (1991), 1010-1034.
Math. Review
link.
-
Kurtz, T., Protter, P., Weak limit theorems for stochastic integrals and
stochastic differential equations, Ann. Probab., 19 (1991),
1035-1070.
Math. Review
link.
-
M'emin, J., Sl omi'nski, L. Condition UT et stabilit'e en loi des
solutions d'equations diff'erentieles stochastiques, S'em. de
Probab. XXV, Lecture Notes in Math., 1485, 162-177,
Springer, Berlin 1991.
Math. Review
link.
-
Meyer, P.A., Zheng, W.A., Tightness criteria for laws of
semimartingales, Ann. Inst. Henri Poincar'e B, 20 (1984),
353-372.
Math. Review
link.
-
Protter, Ph., Stochastic Integration and Differential Equations. A New
Approach., 2nd Ed., Springer 1992.
Math. Review
link.
-
Skorohod,A.V., Limit theorems for stochastic processes, Theor.
Probability Appl., 1 (1956), 261-290.
Math. Review
link.
-
Sl omi'nski, L., Stability of strong solutions of stochastic
differential equations, Stoch. Proc. Appl., 31 (1989), 173-202.
Math. Review
link.
-
Sl omi'nski, L., Stability of stochastic differential equations
driven by general semimartingales, Dissertationes Math.,
CCCXLIX (1996),
113 p.
Math. Review number not available.
-
Stricker, C., Lois de semimartingales et crit`eres de compacit'e,
S'eminares de probabilit'es XIX. Lect. Notes in Math., 1123,
Springer, Berlin 1985.
Math. Review
link.
-
Topso e, F., A criterion for weak convergence of measures with an
application to convergence of measures on $GD,[0,1]$, Math. Scand.
25 (1969), 97-104.
Math. Review
link.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|