|
|
|
| | | | | |
|
|
|
|
|
Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments
|
Julien Barral, INRIA Rocquencourt, France Jacques Lèvy Vèhel, NRIA Rocquencourt, France |
Abstract
We consider a family of stochastic processes built from infinite
sums of independent positive random functions on R +.
Each of these functions increases linearly between two consecutive
negative jumps, with the jump points following a Poisson point
process on R +. The motivation for studying these
processes stems from the fact that they constitute simplified
models for TCP traffic on the Internet. Such processes bear some
analogy with Lévy processes, but they are more complex in the
sense that their increments are neither stationary nor
independent. Nevertheless, we show that their multifractal
behavior is very much the same as that of certain Lévy
processes. More precisely, we compute the Hausdorff multifractal
spectrum of our processes, and find that it shares the shape of
the spectrum of a typical Lévy process. This result yields a
theoretical basis to the empirical discovery of the multifractal
nature of TCP traffic.
|
Full text: PDF
Pages: 508-543
Published on: June 9, 2004
|
Bibliography
-
J.-M. Aubry, S. Jaffard. Random wavelet series.
Comm. Math. Phys. 227 (2002), no. 3, 483--514.
Math. Review 2003g:42054
-
F. Baccelli and B. Thomas. Window Flow
Control in FIFO Networks with Cross Traffic.
Inria Tech. Rep. RR-3434 (1998).
Math. Review number not available.
-
F. Baccelli and D. Hong. TCP is Max-Plus
Linear and what it tells us on its throughput.
Inria Tech. Rep. RR-3986 (2000).
Math. Review number not available.
-
F. Baccelli and D. Hong. AIMD, Fairness and
Fractal Scaling of TCP Traffic.
INFOCOM (June 2002).
Math. Review number not available.
-
F. Baccelli and D. Hong. Interaction of TCP Flows as
Billiards.
Inria Tech. Rep. RR-4437 (2002).
Math. Review number not available.
-
J. Barral and J. L'evy V'ehel. Large deviation spectrum of a
class of additive processes with correlated non-stationary
increments. In preparation, (2003).
Math. Review number not available.
-
J. Barral and J. L'evy V'ehel. Multifractality of
TCP explained.
Inria Tech. Rep (2004).
Math. Review number not available.
-
J. Barral and B.B. Mandelbrot. Multifractal products of
cylindrical pulses.
Probab. Theory Related Fields 124 (2002), no. 3,
409--430.
Math. Review 2004g:28005
-
J. Bertoin. Lévy processes.
Cambridge Tracts in Mathematics
121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN:
0-521-56243-0
Math. Review 98e:60117
- A. Chaintreau, F. Baccelli and C. Diot. Impact of Network Delay
Variation on Multicast Session Performance With TCP-like Congestion
Control.
Inria Tech. Rep. RR-3987 (2000).
Math. Review number not available.
-
M. Crovella and A.Bestavros. Self-similarity in World Wide Web
traffic: Evidence and possible causes.
IEEE/ACM Trans. on
Networking 5, no. 6 (1997) 835-846.
Math. Review number not available.
-
R.M. Blumenthal and R.K. Getoor. Sample functions of stochastic
processes with stationary independent increments.
J. Math. Mech. 10 (1961), 493--516.
Math. Review 23 #A689
-
T. D. Dang, S. Molnar and I. Maricza. Queuing
Performance Estimation for General Multifractal Traffic.
International Journal of Communication Systems 16 (2), (2003)
117-1363.
-
R. Gaigalas and I. Kaj. Convergence of scaled renewal
processes and a packet arrival model.
Bernoulli 9 (2003), 671--703.
Math. Review 2004d:60226
-
C. Houdr'e and J. L'evy V'ehel.Large deviation multifractal
spectra of certain stochastic processes.
Preprint (2003).
Math. Review number not available.
-
P. Jacquet. Long term dependences and heavy tails in traffic
and queues generated by memoryless ON/OFF sources in series.
Inria Tech. Rep. RR-3516 (1998).
Math. Review number not available.
-
S. Jaffard. Old friends revisited: the multifractal nature of some
classical functions.
J. Fourier Anal. Appl. 3 (1997), 1--22.
Math. Review 98b:28013
-
S. Jaffard. The multifractal nature of Lévy
processes.
Probab. Theory Related Fields 114 (1999),
207--227.
Math. Review 2000g:60079
-
S. Jaffard. On lacunary wavelet series.
Ann. Appl. Probab. 10(2000), 313--329.
Math. Review 2001f:60040
-
J.-P.Kahane. Produits de poids aléatoires indépendants et
applications. (French) [Products of independent random weights, and
applications.]
Fractal geometry and analysis (Montreal, PQ, 1989), 277--324,
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 346, Kluwer Acad. Publ.,
Dordrecht, 1991.
Math. Review MR1140725
-
M. Ledoux and M. Talagrand.
Probability in Banach spaces. Isoperimetry and processes.
Ergebnisse der Mathematik undihrer Grenzgebiete (3) [Results in
Mathematics and Related Areas (3)], 23. Springer-Verlag, Berlin,
1991. xii+480 pp. ISBN: 3-540-52013-9
Math. Review 93c:60001
-
W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson. On the self-similar nature of Ethernet traffic (Extended
Version).
IEEE/ACM Trans. on Networking 2 (1994) pp. 1-15.
Math. Review number not available.
-
J. L'evy~V'ehel and R. Riedi. Fractional
Brownian motion and data traffic modeling: The other end of the
spectrum.
Fractals in Engineering J. L'evy V'ehel,
E. Lutton and C. Tricot, Eds., Springer Verlag, 1997.
Math. Review number not available.
-
J. L'evy~V'ehel and B. Sikdar. A
Multiplicative Multifractal Model for TCP Traffic.
Proceedings of IEEE ISCC (2001), 714-719.
Math. Review number not available.
-
B.B. Mandelbrot. Intermittent turbulence in
self-similar cascades: divergence of hight moments and dimension of
the carrier.
J. fluid. Mech. 62 (1974), 331--358.
Math. Review number not available.
-
B.B. Mandelbrot. A class of multinomial
multifractal measures with negative (latent) values for the
``dimension'' $f(alpha)$.
Fractals' Physical Origins and
Properties. Proceedings of the Erice Meeting, 1988. L. Pietronero,
Ed., Plenum Press, New York, 1989, pp 3--29.
Math. Review number not available.
-
V. Paxson and S. Floyd. Wide area traffic: The
failure of Poisson modeling.
IEEE/ACM Trans. on
Networking 3 (1995), 226-244.
Math. Review number not available.
-
V. Pipiras, M.S. Taqqu and J.B. Levy. Slow, fast and
arbitrary growth conditions for renewal reward processes when the
renewals and the rewards are heavy tailed.
Boston University Preprint (2002).
-
R. H. Riedi and J. L'evy-V'ehel. TCP Traffic
is multifractal: A numerical study.
Inria Tech. Rep. RR-3129 (2000).
Math. Review number not available.
-
L. A.Shepp, L. A. Covering the line with random
intervals.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972),
163--170.
Math. Review 48 #1284
-
W. R. Stevens.
TCP/IP illustrated volume 1. Addison
Wesley, 1994.
Math. Review number not available.
-
W.F. Stout.
Almost sure convergence. Probability and
Mathematical Statistics, Vol. 24. Academic Press [A subsidiary of
Harcourt Brace Jovanovich, Publishers], New York-London, 1974. x+381
pp.
Math. Review 56 #13334
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|