|
|
|
| | | | | |
|
|
|
|
|
Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles
|
Mylène Maida, Université Paris-Sud |
Abstract
We establish a large deviation principle for the largest eigenvalue of a rank one deformation of a matrix from the GUE or GOE. As a corollary, we get another proof of the phenomenon, well-known in learning theory and finance, that the largest eigenvalue separates from the bulk when the perturbation is large enough. A large part of the paper is devoted to an auxiliary result on the continuity of spherical integrals in the case when one of the matrix is of rank one, as studied in one of our previous works.
|
Full text: PDF
Pages: 1131-1150
Published on: August 25, 2007
|
Bibliography
- Z.D. Bai, Convergence rate of expected spectral distributions of large
random matrices. I.Wigner matrices, Ann. Probab. 21 (1993),
no.2, 625--648. Math. Review 95a:60039
- Z. D. Bai, Methodologies in spectral analysis of large-dimensional random
matrices, a review. With
comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author Statist. Sinica 9 (1999), no. 3,
611--677.
Math. Review 2000e:60044
- J. Baik, G. Ben~Arous, and S. Péché, Phase transition
of the largest eigenvalue for non-null complex sample covariance matrices, Ann. Probab. 33 (2005), no. 5, 1643--1697.
Math. Review 2006g:15046
- G. Ben Arous, A. Dembo, and A. Guionnet, Aging of spherical spin
glasses, Probab. Theory Related Fields 120 (2001), no.1, 1--67.
Math. Review 2003a:82039
- G. Ben Arous and A. Guionnet, Large deviations for Wigner's law and
Voiculescu's non-commutative entropy, Probab. Theory Related Fields 108 (1997), no.4, 517--542.
Math. Review 98i:15026
- E. Brézin and S. Hikami, Correlations of nearby levels induced by a
random potential, Nuclear Phys. B 479 (1996), no.3, 697--706.
Math. Review 97j:82080
- P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou,
Uniform asymptotics for polynomials orthogonal with respect to varying
exponential weights and applications to universality questions in random
matrix theory, Comm. Pure Appl. Math. 52 (1999), no.11,
1335--1425.
Math. Review 2001g:42050
- P.A. Deift, Orthogonal polynomials and random matrices: a
Riemann-Hilbert approach , Courant Lecture Notes in Mathematics, 3. New York University Courant Institute of Mathematical Sciences, New York,
1999.
Math. Review 2000g:47048
- N. El Karoui, Recent results about the largest eigenvalue of
random covariance matrices and statistical application, Acta Phys.Polon. B 36 (2005), no.9, 2681--2697.
- N. El Karoui, Tracy-widom limit for the largest eigenvalue of a large class of
complex sample covariance matrices, Annals of Probability 35 (2007), no.2.
- D. Féral and S. Péché, The largest eigenvalue of rank one
deformation of large wigner matrices, Comm.Math.Phys 272
(2007),
no.1, 185--228.
- A. Guionnet and M. Maïda, A Fourier view on the R-transform
and related asymptotics of spherical integrals, J. Funct. Anal. 222 (2005), no.2, 435--490.
Math. Review 2006b:60043
- A. Guionnet and O. Zeitouni, Concentration of the spectral measure
for large matrices, Electronic Communications in Probability 5 (2000), 119--136.
Math. Review 2001k:15035
- A. Guionnet and O. Zeitouni, Large deviations asymptotics for spherical integrals, J. Funct.
Anal. 188 (2002), no.2, 461--515.
Math. Review 2003e:60055
- D. Hoyle and M. Rattray, Limiting form of the sample covariance
eigenspectrum in pca and kernel pca, Proceedings of Neural Information
Processing Systems, 2003.
- K. Johansson, Universality of the local spacing distribution in certain
ensembles of Hermitian Wigner matrices, Comm. Math. Phys. 215 (2001), no.3, 683--705.
Math. Review 2002j:15024
- I. Johnstone, On the distribution of the largest eigenvalue in
principal components analysis, Annals of Statistics 29
(2001), no.2,
295--327. Math. Review 2002i:62115
- L. Laloux, P. Cizeau, M. Potters, and J. Bouchaud, Random matrix theory
and financial correlations, Intern. J. Theor. Appl. Finance 3 (2000), no.3, 391--397.
- M. L. Mehta, Random matrices. Second edition. Academic Press Inc.,
Boston, MA, 1991.
Math. Review 92f:82002
- S. Péché, The largest eigenvalue of small rank perturbations of
hermitian random matrices, Probab. Theory Related Fields 134 (2006), no.1, 127--173.
Math. Review 2007d:15041
- C. A. Tracy and H. Widom, Level-spacing distributions and the
Airy kernel, Comm. Math. Phys. 159 (1994), no.1, 151--174.
Math. Review 95e:82003
- E. P. Wigner, On the distribution of the roots of certain symmetric
matrices, Ann. of Math. (2) 67 (1958), 325--327.
Math. Review 95527(20#2029)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|