![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On Lévy processes conditioned to stay positive.
|
Loïc Chaumont, LPMA - Université Paris 6 Ronald Arthur Doney, Department of Mathematics- University of Manchester |
Abstract
We construct the law
of Lévy processes conditioned to stay positive under general
hypotheses. We obtain a Williams type path decomposition at the
minimum of these processes. This result is then applied to prove
the weak convergence of the law of Lévy processes conditioned to
stay positive as their initial state tends to 0. We describe an
absolute continuity relationship between the limit law and the
measure of the excursions away from 0 of the underlying Lévy
process reflected at its minimum. Then, when the Lévy process
creeps upwards, we study the lower tail at 0 of the law of the
height of this excursion.
|
Full text: PDF
Pages: 948-961
Published on: July 14, 2005
|
Bibliography
- J. Bertoin: Lévy Processes,
Cambridge University Press, Cambridge, (1996).Math. Review
98e:60117
- J. Bertoin: An extension of Pitman's
theorem for spectrally positive Lévy processes. Ann. Probab.
20, no. 3, 1464--1483, (1992).Math. Review
93k:60191
- J. Bertoin: Splitting at the infimum
and excursions in half-lines for random walks and Lévy
processes. Stoch. Process, Appl. 47, 17-35, (1993).Math. Review
94h:60110
- J. Bertoin and R.A. Doney: On conditioning a
random walk to stay nonnegative. Ann. Probab. 22, no.
4, 2152-2167, (1994).Math. Review
96b:60168
- L. Chaumont: Sur certains processus de Lévy
conditionnés à rester positifs. Stochastics and Stoch.
Rep., 47, 1--20, (1994).Math. Review
2001e:60093
- L. Chaumont: Conditionings and path
decompositions for Lévy processes. Stoch. Process. Appl.
64, 39-54, (1996).Math. Review
98b:60131
- R.A Doney: Tanaka's construction of Lévy processes
conditioned to stay positive. Séminaire de Probabilités,
XXXVIII, 1--4, Lecture Notes in Math., 1686, Springer, Berlin, 2005.
Math. Review number not available.
- R.A Doney: Some excursion calculations
for spectrally one-sided Lévy processes. Séminaire de
Probabilités, XXXVIII, 5--15, Lecture Notes in Math., 1686,
Springer, Berlin, 2005. Math. Review number not available.
- T. Duquesne: Path decompositions for real Lévy processes.
Ann. Inst. H. Poincaré Probab. Statist. 39, no. 2,
339--370, (2003).Math. Review
2004b:60125
- K. Hirano: Lévy processes with negative
drift conditioned to stay positive. Tokyo J. Math.,
24, 291-308, (2001).Math. Review
2003e:60099
- P.W. Millar: Zero-one laws and the
minimum of a Markov process. Trans. Amer. Math. Soc.
226, 365--391, (1977).Math. Review
55 #6579
- V. Rivero: Recouvrements aléatoires et
processus de Markov auto-similaires. PhD Thesis. Université
Paris 6, (2004). Math. Review number not available.
- M.L. Silverstein: Classification of
coharmonic and coinvariant functions for a Lévy process.
Ann. Probab. 8, 539-575, (1980).Math. Review
81f:60058
- H. Tanaka: Time reversal of random
walks in one dimension. Tokyo J. Math. 12, 159-174,
(1989).Math. Review
90m:60083
- H. Tanaka: Lévy processes
conditioned to stay positive and diffusions in random environments.
Advanced Studies in Pure Mathematics, 39, 355--376, (2004).Math. Review
2005e:60240
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|