![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Eigenvalue Curves of Asymmetric Tridiagonal Matrices
|
Ilya Ya Goldsheid, University of London Boris A Khoruzhenko, University of London |
Abstract
Random Schrödinger operators with imaginary vector potentials
are studied in dimension one. These operators are non-Hermitian
and their spectra lie in the complex plane. We consider the
eigenvalue problem on finite intervals of length n with periodic
boundary conditions and describe the limit eigenvalue distribution
when n goes to infinity. We prove that this limit distribution is
supported by curves in the complex plane. We also obtain equations
for these curves and for the corresponding eigenvalue density in
terms of the Lyapunov exponent and the integrated density of
states of a "reference" symmetric eigenvalue problem. In
contrast to these results, the spectrum of the limit operator in
l2( Z) is a two dimensional set which is not approximated
by the spectra of the finite-interval operators.
|
Full text: PDF
Pages: 1-28
Published on: November 21, 2000
|
Bibliography
-
Avron, J. and Simon, B. (1983),
Almost Periodic Schroedinger Operators II.
Duke Math. Journ. 50 , 369 - 391.
Math. Review 85i:34009a
-
Bougerol, P. and Lacroix J. (1985)
Products of Random Matrices with Applications to Random Schroedinger Operators.
Birkhaeuser, Boston.
Math. Review 88f:60013
-
Brezin, E. and Zee, A (1998),
Non-Hermitian localization: Multiple scattering and bounds.
Nucl. Phys. B509[FS], 599 - 614.
Math. Review number not available.
-
Brouwer, P.W., Silvestrov P.G., and Beenakker, C.W.J. (1997),
Theory of directed localization in one dimension.
Phys. Rev. B56, R4333 - R4336.
Math. Review number not available.
-
Carmona, R. and Lacroix, J. (1990),
Spectral Theory of Random Schroedinger Operators.
Birkhaeuser, Boston.
Math. Review 92k:47143
-
Craig, W. and Simon, B. (1983),
Subharmonicity of the Lyapunov Index.
Duke Math. Journ. 50, 551 - 560.
Math. Review 85f:34086
- Davies, E.B.,
Spectral properties of non-self-adjoint matrices and operators.
To appear in Proc. Royal Soc. A.
Math. Review number not available.
-
Davies, E.B.,
Spectral theory of pseudo-ergodic operators.
To appear in Commun. Math. Phys.
Math. Review number not available.
-
Hatano, N. and Nelson, D.R. (1996),
Localization transitions in non-Hermitian quantum mechanics.
Phys. Rev. Lett. 77, 570 - 573.
Math. Review number not available.
-
Hatano, N. and Nelson, D.R. (1997),
Vortex pinning and non-Hermitian quantum mechanics.
Phys. Rev. B56, 8651 - 8673.
Math. Review number not available.
-
Hirshman Jr., I.I. (1967),
The spectra of certain Toeplitz matrices.
Illinois J. Math. 11, 145 - 159.
Math. Review 34:4905
-
Hormander, L. (1983)
The analysis of linear partial differential equations, Vol. I.
Springer, New York.
Math. Review 85g:35002a
-
Hormander, L. (1994),
Notions of Convexity.
Birkhaeuser, Boston.
Math. Review 95k:00002
-
Goldsheid, I. Ya. (1975),
Asymptotic behaviour of a product of random
matrices that depend on a parameter (Russian) ,
Dokl. Akad. Nauk SSSR 224, 1248 - 1251.
Math. Review 55:4328
-
Goldsheid, I. Ya. (1980)
Asymptotic properties of the product of random matrices depending
on a parameter.
In Multicomponent Random Systems, pp. 239 -283,
Sinai, Ya.G. and Dobrushin, R., eds.,
Adv. in Prob. 8 .
Dekker, New York.
Math. Review 82f:60027
-
Goldsheid, I.Ya. and Khoruzhenko, B.A. (1998),
Distribution of eigenvalues in non-Hermitian Anderson models ,
Phys. Rev. Lett. 80, 2897 - 2900.
Math. Review number not available.
-
Naiman P.B. (1964),
On the spectral theory of non-symmetric periodic Jacobi matrices
(in Russian).
Zap. Meh.-Mat. Fak. Har' kov. Gos. Univ. i
Har'kov. Mat. Obsc., (4), 30 , 138-151.
Math. Review 36:1999
-
Pastur, L.A. and Figotin, A.L. (1992),
Spectra of Random and Almost-Periodic Operators.
Springer, Berlin.
Math. Review 94h:47068
-
Reichel, L. and Trefethen, L.N. (1992),
Eigenvalues and pseudo-eigenvalues of Toeplitz matrices.
Lin. Alg. Appl. 162-4, 153 - 185.
Math. Review 92k:15028
-
Schmidt, P and Spitzer F. (1960),
The Toeplitz matrices of an arbitrary Laurent polynomial.
Math. Scand. 8 , 15 - 38.
Math. Review 23:A1977
-
Trefethen, L.N. (1992),
Pseudospectra of matrices.
In Numerical Analysis 1991, D. F. Griffiths and G. A. Watson, eds., pp. 336 - 360.
Longman Scientific and Technical, Harlow, Essex, UK.
Math. Review 93e:65064
-
Trefethen, L.N., Contendini, M, and Embree, M.,
Spectra, pseudospectra, and localization for random bidiagonal matrices.
To appear in Commun. Pure and Appl. Math.
Math. Review number not available.
-
Trefethen, L.N., Trefethen, A.E., Reddy, S.C., and
Driscoll, T.A. (1993),
Hydrodynamic stability without eigenvalue.
Science 261 , 578 - 584.
Math. Review number not available.
-
Widom, H. (1994),
Eigenvalue distribution for nonselfadjoint Toeplitz matrices.
In Operator Theory: Advances and Applications
71 , 1 - 8.
Math. Review 95g:47043
-
Widom, H. (1990),
Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics
of the Toeplitz determinants in the case of nonvanishing index.
In Operator Theory: Advances and Applications
48 , 387 - 421.
Math. Review 93m:47033
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|