|
|
|
| | | | | |
|
|
|
|
|
Lyapunov exponents for the one-dimensional parabolic Anderson model with drift
|
Alexander Drewitz, TU Berlin |
Abstract
We consider the solution to the one-dimensional parabolic Anderson model with homogeneous initial condition, arbitrary drift
and a time-independent potential bounded from above. Under ergodicity and independence conditions we derive representations
for both the quenched Lyapunov exponent and, more importantly, the p-th annealed Lyapunov exponents for all positive real p.
These results enable us to prove the heuristically plausible fact that the p-th annealed Lyapunov exponent converges to the
quenched Lyapunov exponent as p tends to 0. Furthermore, we show that the solution is p-intermittent for p large enough.
As a byproduct, we compute the optimal quenched speed of the random walk appearing in the Feynman-Kac representation of the
solution under the corresponding Gibbs measure. In our context, depending on the negativity of the potential, a phase
transition from zero speed to positive speed appears as the drift parameter or diffusion constant increase, respectively.
|
Full text: PDF
Pages: 2283-2336
Published on: December 21, 2008
|
Bibliography
- Biskup, Marek; König, Wolfgang. Long-time tails in the parabolic Anderson model with bounded potential.
Ann. Probab. 29 (2001), no. 2, 636--682.
MR1849173 (2002j:60038)
- Biskup, Marek; König, Wolfgang. Screening effect due to heavy lower tails in one-dimensional
parabolic Anderson model. J. Statist. Phys. 102 (2001), no. 5-6, 1253--1270.
MR1830447 (2003a:82061)
- Carmona, René A.; Molchanov, S. A. Parabolic Anderson problem and intermittency. Mem. Amer. Math.
Soc. 108 (1994), no. 518, viii+125 pp.
MR1185878 (94h:35080)
- Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Second edition.
Applications of Mathematics (New York), 38. Springer-Verlag, New York,
1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036
(99d:60030)
- Ebeling, W.; Engel, A.; Esser, B.; Feistel, R. Diffusion and reaction in random media and models
of evolution processes. J. Statist. Phys. 37 (1984), no. 3-4, 369--384.
MR0777424 (86a:82022)
- Ellis, Richard S. Entropy, large deviations, and statistical mechanics. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 271. Springer-Verlag, New York, 1985.
xiv+364 pp. ISBN: 0-387-96052-X
MR0793553 (87d:82008)
- Flury, Markus. Large deviations and phase transition for random walks in random nonnegative potentials.
Stochastic Process. Appl. 117 (2007), no. 5, 596--612.
MR2320951 (2008k:60061)
- Freidlin, Mark. Functional integration and partial differential equations. Annals of Mathematics Studies,
109. Princeton University Press, Princeton, NJ, 1985. x+545 pp. ISBN: 0-691-08354-1; 0-691-08362-2
MR0833742 (87g:60066)
- Greven, Andreas; den Hollander, Frank. Branching random walk in random environment: phase transitions for
local and global growth rates.Probab. Theory Related Fields 91 (1992), no. 2, 195--249.
MR1147615 (93c:60160)
- Gärtner, J.; den Hollander, F. Intermittency in a catalytic random medium. Ann. Probab. 34 (2006), no. 6,
2219--2287. MR2294981 (2008e:60200)
- Gärtner, Jürgen; König, Wolfgang. The parabolic Anderson model. In Interacting stochastic systems, pages 153--179.
Springer, Berlin, 2005.
- Gärtner, Jürgen; König, Wolfgang; Molchanov, Stanislav. Geometric characterization of intermittency in the parabolic
Anderson model. Ann. Probab. 35 (2007), no. 2, 439--499.
MR2308585 (2008g:60202)
- Gärtner, J.; Molchanov, S. A. Parabolic problems for the Anderson model. I. Intermittency and related topics.
Comm. Math. Phys. 132 (1990), no. 3, 613--655.
MR1069840 (92a:82115)
- Komiya, Hidetoshi. Elementary proof for Sion's minimax theorem. Kodai Math. J. 11 (1988), no. 1, 5--7.
MR0930413 (89f:49017)
- Rockafellar, R. Tyrrell; Wets, Roger J.-B. Variational analysis. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 317. Springer-Verlag, Berlin, 1998. xiv+733 pp.
ISBN: 3-540-62772-3
MR1491362 (98m:49001)
- Schulz, S. Exponentielle Asymptotik im parabolischen Anderson-Modell mit maximaler Drift. Diploma thesis, TU Berlin, 2005
- Zerner, Martin P. W. Directional decay of the Green's function for a random nonnegative potential on $Zsp d$.
Ann. Appl. Probab. 8 (1998), no. 1, 246--280.
MR1620370 (99f:60172)
- Zel'dovich, Ya. B.; Molchanov, S. A.; Ruzmaikin, A. A.; Sokoloff, D. D. Intermittency, diffusion and
generation in a nonstationary random medium. Mathematical physics reviews, Vol. 7, 3--110, Soviet Sci.
Rev. Sect. C Math. Phys. Rev., 7, Harwood Academic Publ., Chur, 1988.
MR1128327 (92j:82050)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|