![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Norm of the Product of a Large Matrix and a Random Vector
|
Albrecht Böttcher, TU Chemnitz Sergei Grudsky, CINVESTAV del I.P.N. |
Abstract
Given a real or complex n x n matrix A,
let X be the random variable ||Ax||^2 divided by ||A||^2
where x is uniformly distributed on the unit sphere of Rn
or Cn.
We compute the expected value and the variance of the random variable
X. The result is applied to several classes of structured matrices. It
is in particular shown that
if A is a Toeplitz matrix, then for large n the values
of X cluster fairly sharply around a number that can be completely
identified.
|
Full text: PDF
Pages: 1-29
Published on: May 22, 2003
|
Bibliography
- F. Avram: On bilinear forms in Gaussian random variables and
Toeplitz matrices. Probab. Theory Related Fields 79
(1988), 37--45. MR
90a:60035
- A. Böttcher and S. Grudsky: Toeplitz Matrices, Asymptotic
Linear Algebra, and Functional Analysis. Hindustan Boook Agency, New
Delhi 2000 and
Birkhäuser Verlag, Basel 2000. MR
2001g:47043
- A. Böttcher and B. Silbermann: Analysis of Toeplitz
Operators. Akademie-Verlag, Berlin 1989 and Springer-Verlag, Berlin 1990.
MR
92e:47001
- A. Böttcher and B. Silbermann: Introduction to Large
Truncated Toeplitz Matrices. Springer-Verlag, New York 1999. MR
2001b:47043
- S. Dasgupta and A. Gupta: An elementary proof of a theorem of Johnson
and Lindenstrauss. Random Structures & Algorithms 22
(2003), 60--65. MR
1 943 859
- D. Fasino and P. Tilli: Spectral clustering properties of block
multilevel Hankel matrices. Linear Algebra Appl. 306 (2000),
155--163. MR
2000j:47053
- G. M. Fichtenholz: Differential- und Integralrechnung,
Vol. III. Deutscher Verlag der Wissenschaften, Berlin 1977. MR
57#12795
- P. Halmos: A Hilbert Space Problem Book. D. van Nostrand,
Princeton 1967. MR
34#8178
- N. J. Higham: Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, PA 1996. MR
97a:65047
- M. Kac, W. L. Murdock, and G. Szegö: On the eigenvalues of certain
Hermitian forms. J. Rat. Mech. Anal. 2 (1953), 787--800. MR
15,538b
- S. V. Parter: On the distribution of the singular values of Toeplitz
matrices. Linear Algebra Appl. 80 (1986), 115--130. MR
87k:47062
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev: Integrals
and Series. Vol. 1. Elementary Functions. Gordon and Breach, New York
1986. MR
88f:00013
- S. Roch and B. Silbermann: Index calculus for approximation methods and
singular value decomposition. J. Math. Analysis Appl. 225
(1998), 401--426. MR
99g:47030
- S. M. Rump: Structured perturbations. Part I: Normwise distances. Preprint,
April 2002.
- P. Tilli: A note on the spectral distribution of Toeplitz matrices.
Linear and Multilinear Algebra 45 (1998), 147--159. MR
99j:65063
- O. Toeplitz: Zur Theorie der quadratischen und bilinearen Formen
von unendlichvielen Veränderlichen. Math. Ann. 70 (1911),
351--376.
- W. F. Trench: Asymptotic distribution of the spectra of a class of generalized
Kac-Murdock-Szegö matrices. Linear Algebra Appl.
294 (1999), 181--192. MR
2000c:15012
- E. E. Tyrtyshnikov and N. L. Zamarashkin: Toeplitz eigenvalues for
Radon measures. Linear Algebra Appl. 343/344 (2002), 345--354.
MR
2002k:47061
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|