![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Hydrodynamic limit of zero range processes among random conductances on the supercritical percolation cluster
|
Alessandra Faggionato, Department of Mathematics. University La Sapienza, Rome. Italy |
Abstract
We consider i.i.d. random variables omega={omega(b)}
parameterized by the family of bonds in Z^d, d>1. The
random variable omega(b) is thought of as the conductance of bond
b and it ranges in a finite interval [0,c_0]. Assuming the
probability of the event {omega(b)>0} to be supercritical and
denoting by C(omega) the unique infinite cluster associated to
the bonds with positive conductance, we study the zero range process
on C(omega) with omega(b)-proportional probability rate of jumps
along bond b. For almost all realizations of the environment we
prove that the hydrodynamic behavior of the zero range process is
governed by a nonlinear heat equation, independent from omega. As byproduct of the above
result and the blocking effect of the finite clusters, we discuss
the bulk behavior of the zero range process on Z^d with
conductance field omega. We do not require any ellipticity
condition.
|
Full text: PDF
Pages: 259-291
Published on: March 30, 2010
|
Bibliography
- E. D. Andjel. Invariant measures for the zero range process.
Ann. Probab. 10 (1982), 525-547.
Math. Review 83j:60106
- P. Antal, A. Pisztora. On the chemical
distance for supercritical Bernoulli percolation. Ann. Probab.
24 (1996), 1036-1048.
Math. Review 98b:60168
-
D. Ben-Avraham, S. Havlin.
Diffusion and Reactions in Fractals and Disordered Systems.
Cambridge University Press, Cambridge (2000).
Math. Review 2003h:82001
- O. Benois, C.Kipnis, C. Landim. Large
deviations from the hydrodynamical limit of mean zero asymmetric
zero range processes. Stochastic Process. Appl. 55 (1995), 65-89.
Math. Review 96a:60077.
- H. Brézis, M.G. Crandall. Uniqueness of
solutions of the initial--value problem for u_t-
ΔΦ(u)=0. J. Math. Pures and appl. 58 (1979), 153-163.
Math. Review 80e:35029
-
N. Berger, M. Biskup.
Quenched invariance principle for simple random walk on percolation clusters.
Probab. Theory Related Fields 137
(2007), 83-120.
Math. Review 2007m:60085
-
M. Biskup, T.M. Prescott. Functional CLT for random walk
among bounded random conductances. Electronic Journal of
Probability 12 (2007), 1323-1348.
Math. Review 2009d:60336
-
C-C. Chang, C. Landim, S. Olla.
Equilibrium fluctuations of asymmetric simple
exclusion processes in dimension d≥3.
Probab. Theory Relat. Fields 119 (2001), 381409.
Math. Review 2002e:60157
- A. De Masi, P. Ferrari, S. Goldstein, W.D. Wick.
An invariance principle for reversible Markov processes. Applications to random motions in random
environments. J. Statis. Phys. 55 (1985), 787-855.
Math. Review 91e:60107
-
J.D. Deuschel, A. Pisztora. Surface order
large deviations for high--density percolation. Probab. Theory
Related Fields 104 (1996), 467-482.
Math. Review 97d:60053
- A. Faggionato. Random walks and exclusion processes among random
conductances on random infinite clusters: homogenization and
hydrodynamic limit. Electron. J. Probab. 13 (2008),
2217-2247.
Math. Review number not available
- A. Faggionato. Bulk diffusion of 1D exclusion process
with bond disorder. Markov Processes and Related Fields 13 (2007),
519-542.
Math. Review 2008j:60230
-
A. Faggionato, M. Jara, C. Landim.
Hydrodynamic limit
of one dimensional subdiffusive exclusion processes
with random conductances.
Probab. Theory Related Fields 144 (2009), 633-667.
Math. Review number not available
-
A. Faggionato, F. Martinelli. Hydrodynamic limit of a
disordered lattice gas. Probab. Theory and Related Fields
127 (2003), 535-608.
Math. Review 2004i:82041
- J. Fritz. Hydrodynamics in a symmetric random medium.
Comm. Math. Phys. 125 (1989), 13-25.
Math. Review 91c:82060
- L. Fontes, C.M. Newman.
First Passage Percolation for Random Colorings of Z^d. Ann.
Appl. Probab. 3 (1993), 746-762.
Math. Review 94k:60156a
- L. Fontes, C.M. Newman. Correction: First Passage Percolation for Random Colorings of
Z^d. Ann. Appl. Probab. 4 (1994), 254-254.
Math. Review 94k:60156b
-
P. Goncalves, M. Jara. Scaling limit of gradient systems in random environment. J. Stat. Phys. 131 (2008),
691-716.
Math. Review 2009d:82068
- P.Goncalves, M. Jara.
Density fluctuations for a zero-range process on the
percolation cluster. Electron. Commun. Probab.
14 (2009), 382-395.
Math. Review number not available
- G. Grimmett. Percolation. Second edition. Springer, Berlin
(1999).
Math. Review 2001a:60114
- M. Jara. Hydrodynamic limit for a zero-range
process in the Sierpinski gasket. Comm. Math. Phys. 288 (2009)
773-797.
Math. Review number not available
- M. Jara, C. Landim. Nonequilibrium central
limit theorem for a tagged particle in symmetric simple exclusion.
Ann. Inst. H. Poincaré, Prob. et
Stat. 42 (2006), 567-577.
Math. Review
2008h:60406
- H. Kesten. Percolation theory for
mathematicians. Progress in Probability and Statistics, Vol. 2,
Birkhauser, Boston, (1982).
Math. Review 84i:60145
- C. Kipnis, C. Landim. Scaling limits of interacting particle
systems. Springer, Berlin (1999).
Math. Review 2000i:60001
- C. Kipnis, S.R.S. Varadhan. Central limit
theorem for additive functionals of reversible Markov processes and
applications to simple exclusion. Commun. Math. Phys. 104 (1986),
1-19.
Math. Review 87i:60038
- C. Landim, T. Franco. Hydrodynamic limit of gradient exclusion processes with
conductances. Archive for Rational Mechanics and Analysis 195 (2010), 409-439.
Math. Review number not available
-
C. Landim, M. Mourragui. Hydrodynamic limit of mean zero
asymmetric zero range processes in infinite volume. Ann. Inst. H. Poincaré, Prob. et Stat. 33 (1997), 65-82.
Math. review 98e:60159
-
T.M. Liggett. Interacting particle systems.
Springer, New York (1985).
Math. Review 86e:60089
- P. Mathieu. Quenched invariance principles for random walks
with random conductances}. J. Stat. Phys. 130
(2008), 1025-1046.
Math. Review 2009b:82040
-
P. Mathieu, A.L. Piatnitski. Quenched
invariance principles for random walks on percolation clusters}.
Proceedings of the Royal Society A 463 (2007), 2287-2307.
Math. Review 2008e:82033
- J. Quastel. Diffusion in disordered media. In Proceedings
in Nonlinear Stochastic PDEs (1996), T. Funaki and W.
Woyczinky eds, Springer, New York, 65-79.
Math. Review 97k:60278
- J. Quastel. Bulk diffusion in a system with site disorder.
Ann. Probab. 34 (2006), 1990-2036.
Math. Review
2007i:60133
- T. Seppäläinen. Translation Invariant Exclusion
Processes.
Available online
-
V. Sidoravicius, A.-S. Sznitman.
Quenched invariance principles for walks on clusters of percolation
or among random conductances. Probab. Theory Related Fields
129 (2004), 219244.
Math. Review 2005d:60155
- F.J. Valentim. Hydrodynamic limit of gradient exclusion processes with conductances on Z^d. Preprint (2009).
- S.R.S. Varadhan. Nonlinear diffusion limit for
a system with nearest neighbor interactions II.
Asymptotic Problems in Probability Theory: Stochastic Models and
Diffusion on Fractals , edited by K. Elworthy and N. Ikeda, Pitman
Research Notes in Mathematics 283 , Wiley, 75-128 (1994).
Math. Review 97a:60144
- J.L. Vázquez. The porous medium equation: mathematical theory.
Clarendon Press, Oxford (2007).
Math. Review 2008e:35003
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|