|
|
|
| | | | | |
|
|
|
|
|
Parabolic Harnack inequality and local limit theorem for percolation clusters
|
Ben M Hambly, University of Oxford Martin T Barlow, University of British Columbia |
Abstract
We consider the random walk on supercritical percolation clusters in Zd. Previous papers have obtained Gaussian heat kernel bounds,
and a.s. invariance principles for this process. We show how this
information leads to a parabolic Harnack inequality, a local limit
theorem and estimates on the Green's function.
|
Full text: PDF
Pages: 1-26
Published on: January 7, 2009
|
Bibliography
-
P. Antal, A. Pisztora. On the chemical distance for
supercritical bernoulli percolation. Ann. Probab. 24
(1996), 1036--1048. Math. Review
98b:60168
-
M.T. Barlow. Random walks on supercritical
percolation clusters. Ann. Probab. 32 (2004), 3024--3084.
Math. Review
2006e:60146
-
M.T. Barlow, R.F. Bass, Z.-Q. Chen, M. Kassmann.
Non-local Dirichlet Forms and Symmetric Jump Processes.
To appear Trans. Amer. Math. Soc. Math. Review number not available.
-
M.T. Barlow, R.F. Bass, T. Kumagai.
Parabolic Harnack inequality and heat kernel
estimates for random walks with long range jumps.
To appear Math. Zeitschrift. Math. Review number not available.
-
R.F. Bass.
On Aronsen's upper bounds for heat kernels.
Bull. London Math. Soc. 34 (2002), 415--419. Math. Review
2003c:35054
-
bibitem {BLS} I. Benjamini, R. Lyons, O. Schramm.
Percolation perturbations in potential theory and random walks.
In: Random walks and discrete potential theory (Cortona, 1997), 56--84,
Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999. Math. Review
2002f:60185
-
N. Berger, M. Biskup.
Quenched invariance principle for simple random walk on
percolation clusters. Probab. Theory Rel. Fields
137 (2007), 83--120. Math. Review
2002f:60185
- N. Berger, M. Biskup, C.E. Hoffman, G. Kozma.
Anomalous heat-kernel decay for random walk amoung
bounded random conductances.
Ann. Inst. Henri Poincar'e. 44 (2008), 374-392.
Math. Review
not yet available
-
M. Biskup, T.M. Prescott.
Functional CLT for random walk among bounded random conductances.
Electron. J. Probab. 12 (2007), 1323--1348 Math. Review
not yet available
-
R.M Blumenthal and R.K. Getoor.
Markov Processes and Potential Theory.
Academic Press, Reading, MA, 1968. Math. Review
41 #9348
-
O. Couronn'e, R.J. Messikh. Surface order large deviations
for 2D FK-percolation and Potts models.
Stoch. Proc. Appl. 113 (2004), 81--99. Math. Review
2005e:60058
-
P.G. de Gennes. La percolation: un concept unificateur.
La Recherche 7 (1976), 919--927. Math. Review number
not available
-
T. Delmotte. Parabolic Harnack inequality and estimates
of Markov chains on graphs. Rev. Math. Iberoamericana 15
(1999), 181--232. Math. Review
2000b:35103
-
A. De Masi, P.A. Ferrari, S. Goldstein, W.D. Wick.
An invariance principle for reversible Markov processes.
Applications to random motions in random environments.
J. Statist. Phys. 55 (1989), 787--855. Math. Review
91e:60107
-
J.-D. Deuschel, A. Pisztora. Surface order large deviations for
high-density percolation.
Probab. Theory Related Fields 104 (1996), 467--482. Math. Review
97d:60053
-
E.B. Fabes, D.W. Stroock. A new proof of Moser's parabolic
Harnack inequality via the old ideas of Nash.
Arch. Mech. Rat. Anal. 96 (1986), 327--338. Math. Review
88b:35037
-
W. Feller. An introduction to probability
theory and its applications.
Vol. II}. 2nd ed. Wiley, New York-London-Sydney, 1971. Math. Review
42 #5292
-
G.R. Grimmett.
Percolation. (2nd edition). Springer, 1999. Math. Review
2001a:60114
-
A. Maritan. About diffusion processes in
disordered systems. J. Phys. A: Math. Gen.
21 (1988) 859--863.
Math. Review number not available.
-
P. Mathieu, E. Remy. Isoperimetry and heat kernel decay
on percolation clusters.
Ann. Probab. 32 (2004), 100--128. Math. Review
2005e:60233
-
P. Mathieu, A. Piatnitski.
Quenched invariance principles for random walks on percolation clusters.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
463 (2007), 2287--2307. Math. Review
2008e:82033
-
P. Mathieu.
Quenched invariance principles for random walks with random conductances.
J. of Stat. Phys., 130, (2008) 1025-1046. Math. Review
number not available yet
-
J. Nash. Continuity of solutions of parabolic and elliptic
equations. Amer. J. Math. 80 (1958), 931--954. Math. Review
20 #6592
-
L. Saloff-Coste. Aspects of Sobolev-type
inequalities. Cambridge Univ. Press 2002. Math. Review
2003c:46048
-
V. Sidoravicius and A.-S. Sznitman.
Quenched invariance principles for walks on clusters of percolation
or among random conductances.
Probab. Theory Rel. Fields 129 (2004), 219--244. Math. Review
2005d:60155
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|