|
|
|
| | | | | |
|
|
|
|
|
Semi-martingales and rough paths theory
|
Laure Coutin, Laboratoire de Statistique et Probabilités, Université Paul Sabatier Antoine Lejay, Projet OMEGA (INRIA Lorraine/IECN) |
Abstract
We prove that the theory of rough paths,
which is used to define
path-wise integrals and path-wise differential equations,
can be used with continuous semi-martingales.
We provide then an almost sure theorem of
type Wong-Zakai. Moreover, we show that the conditions
UT and UCV, used to prove that one can interchange
limits and Ito or Stratonovich integrals, provide
the same result when one uses
the rough paths theory.
|
Full text: PDF
Pages: 761-785
Published on: July 14, 2005
|
Bibliography
-
R.F. Bass, B. Hambly and T.J. Lyons.
Extending the Wong-Zakai theorem to reversible Markov
processes.
J. Eur. Math. Soc., 4(3), 237--269,
2002.
DOI:10.1007/s100970200040.
Math. Review 1924401
- A. Bensoussan, J.L. Lions and G. Papanicolaou.
Asymptotic Analysis for Periodic Structures.
North-Holland, 1978.
Math. Review 0503330
-
M. Capitaine and C. Donati-Martin.
The Lévy area process for the free Brownian motion.
J. Funct. Anal., 179(1), 153--169,
2001.
DOI:10.1006/jfan.2000.3679.
Math. Review 1807256
- S. Cohen and A. Estrade.
Non-symmetric approximations for manifold-valued semimartingales.
Ann. Inst. H. Poincaré Probab. Statist., 36(1),
45--70, 2000.
Math. Review 1743093
- L. Coutin and Z. Qian.
Stochastic analysis, rough path analysis and fractional Brownian
motions.
Probab. Theory Related Fields, 122(1),
108--140, 2002.
DOI:10.1007/s004400100158.
Math. Review 1883719
- H. Föllmer.
Dirichlet processes.
In Stochastic integrals (Proc. Sympos., Univ. Durham, Durham,
1980), vol.&npsp;851 of Lecture Notes in Math., pp. 476--478. Springer,
Berlin, 1981.
Math. Review 0621001
- P. Friz.
Continuity of the Itô-Map for Hölder rough paths with
applications to the support theorem in Hölder norm.
ArXiv:math.PR/0304501, Courant Institute
(U.S.A.) (preprint), 2003.
- P. Friz and N. Victoir.
Approximations of the Brownian Rough Path with Applications to
Stochastic Analysis.
ArXiv:math.PR/0308238, Courant Institute
(U.S.A.)/Oxford University (U.-K.) (preprint), 2003.
- B. M. Hambly and T. J. Lyons.
Stochastic area for Brownian motion on the Sierpinski gasket.
Ann. Probab., 26(1), 132--148, 1998.
Math. Review 1617044
- N. Ikeda and S. Watanabe.
Stochastic Differential Equations and Diffusion Processes.
North-Holland, 2nb edition, 1989.
Math. Review 1011252
-
A. Jalubowski, J. Mémin and G. Pagès.
Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod. Probab. Theory Related Fields, 81, pp. 11--137, 1989.
Math. Review 0981569
-
J. Jacod and A.N. Shiryaev.
Limit Theorems for Stochastic Processes.
Springer-Verlag, 1987.
Math. Review 0959133
-
T.G. Kurtz and P. Protter.
Weak Convergence of Stochastic Integrals and Differential Equations.
In Probabilistic Models for Nonlinear Partial Differential
Equations, Montecatini Terme, 1995, edited by D. Talay and
L. Tubaro, vol. 1627 of Lecture Notes in Math., pp. 1--41.
Springer-Verlag, 1996.
Math. Review 1431298
- H. Kunita.
Stochastic flows and stochastic differential equations.
Cambridge University Press, 1990.
Math. Review 1070361
- A. Lejay.
On the convergence of stochastic integrals driven by processes
converging on account of a homogenization property.
Electron. J. Probab., 7(18), 1--18,
2002.
Math. Review 1943891
- A. Lejay.
An introduction to rough paths.
In Séminaire de Probabilités XXXVII, vol. 1832 of
Lecture Notes in Math., 1--59. Springer-Verlag Heidelberg,
2003.
Math. Review 2053040
-
A. Lejay and T.J. Lyons.
On the Importance of the Lévy Area for Systems Controlled by
Converging Stochastic Processes. Application to Homogenization.
In Current Trends in Potential Theory
Conference Proceedings, Bucharest, September 2002 and 2003 edited
by D. Bakry, L. Beznea, Gh. Bucur, M. Röckner. The Theta Foundation, 2005. MR number not yet available.
- M. Ledoux, T. Lyons and Z. Qian.
Lévy area of Wiener processes in Banach spaces.
Ann. Probab., 30(2), 546--578, 2002.
Math. Review 1905851
- T. Lyons and Z. Qian.
System Control and Rough Paths.
Oxford Mathematical Monographs. Oxford University Press, 2002.
Math. Review 2036784
- M. Ledoux, Z. Qian and T. Zhang.
Large deviations and support theorem for diffusions via rough paths.
Stochastic Process. Appl., 102(2),
265--283, 2002.
DOI:10.1016/S0304-4149(02)00176-X.
Math. Review 1935127
- T.J. Lyons.
Differential equations driven by rough signals.
Rev. Mat. Iberoamericana, 14(2),
215--310, 1998.
Math. Review 1654527
- J. Mémin and L. Slominski.
Condition UT et stabilité en loi des solutions
d'équations différentielles stochastiques.
In Séminaire de Probabilités XXV, vol. 1485 of
Lecture Notes in Math., 162--177. Springer-Verlag Heidelberg,
1991.
Math. Review 1187779
- P. Protter.
Approximations of solutions of stochastic differential
equations driven by semimartingales.
Ann. Probab., 13(3), 716--743,
1985.
Math. Review 0799419
- P. Protter.
Stochastic Integration and Differential
Equation, A New Approach.
Applications of Mathematics, Springer-Verlag, 1990.
Math. Review 1037262
- A. Rozkosz and L. Slominski.
Extended Convergence of Dirichlet Processes.
Stochastics Stochastics Rep., 65(1--2),
79--109, 1998.
Math. Review 1708420
-
D. Revuz and M. Yor.
Continuous Martingales and Brownian Motion.
Springer-Verlag, 1991.
Math. Review 1083357
-
E.-M. Sipiläinen.
A pathwise view of solutions of stochastic differential
equations.
PhD thesis, University of Edinburgh, 1993.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|