![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Statistically Stationary Solutions to the 3D Navier-Stokes Equations do not show Singularities
|
Franco Flandoli, Università di Pisa Marco Romito, Università di Firenze |
Abstract
If $mu$ is a probability measure on the set of suitable weak solutions of the
3D Navier-Stokes equations, invariant for the time-shift, with finite mean
dissipation rate, then at every time t the set of singular points is
empty $mu$-a.s. The existence of a measure $mu$ with the previous
properties is also proved; it may describe a turbulent asymptotic regime.
|
Full text: PDF
Pages: 1-15
Published on: August 17, 2001
|
Bibliography
-
Bell, J. B. and Marcus, D. L. (1992),
Vorticity intensification and the transition to turbulence in the three-dimensional Euler equation,
Comm. Math. Phys. 147, 371-394
MR 93c:76048
-
Caffarelli, L. Kohn, R. and Nirenberg, L. (1982),
Partial regularity of suitable weak solutions of the Navier-Stokes equations,
Comm. Pure Appl. Math. XXXV, 771-831
MR 84m:35097
-
Chorin, A. J. (1982),
The evolution of a turbulent vortex,
Comm. Math. Phys. 83, 517-535.
MR 83g:76042
-
Chorin A. J. (1994),
Vorticity and Turbulence,
Springer-Verlag, New York.
MR 95m:76043
-
Flandoli, F. and Schmalfuss, B. (1999),
Weak solutions and attractors for the 3 dimensional Navier-Stokes equations with non-regular force,
J. Dyn. Diff. Eq. 11, Nr. 2, 355-398.
MR 2000j:60076
-
Fursikov, A. V. (1983),
Statistical extremal problems and unique solvability of the three dimensional Navier-Stokes system under almost all initial conditions,
PMM USSR 46, Nr. 5, 637-644.
MR 84k:76046
-
Gallavotti, G. (1996),
Ipotesi per una introduzione alla meccanica dei fluidi,
Quaderni CNR-GNFM, Roma.
-
Grauer, R. and Sideris, T. (1991),
Numerical computation of 3D incompressible ideal fluids with swirl,
Phys. Rev. Lett. 67, 3511-3514.
-
Kerr, R. (1993),
Evidence for a singularity of the three dimensional incompressible Euler equation,
Phys. Fluids A 6, 1725-1739.
MR 94d:76015
-
Lanford III, O. E. (1975),
Time evolution of large classical systems,
in: Dynamical systems, theory and applications, Lecture Notes in Physics, Vol. 38, Springer-Verlag, Berlin.
MR 57#18653
-
Lin, F. (1998),
A new proof of the Caffarelli-Kohn-Nirenberg theorem,
Comm. Pure Appl. Math. LI, 241-257.
MR 98k:35151
-
Lions, P. L. (1996),
Mathematical Topics in Fluid Mechanics,
Vol. I, Clarendon Press, Oxford.
98b:76001
-
Romito, M. (2000),
Ph.D. Thesis,
Pisa.
-
Scheffer, V. (1980),
The Navier-Stokes equations on a bounded domain,
Comm. Math. Phys. 73, 1-42.
MR 81f:35097
-
Sell, G. (1996),
Global attractor for the 3D Navier-Stokes equations,
J. Dyn. Diff. Eq. 8.
MR 98e:35127
-
Serrin, J. (1962),
On the interior regularity of weak solutions of the Navier-Stokes equations,
Arch. Rat. Mech. Anal. 9, 187-195.
MR 25:346
-
Siegmund-Schultze, R. (1985),
On non-equilibrium dynamics of multidimensional infinite particle systems in the translation invariant case,
Comm. Math. Phys. 100, 245-265.
MR 87a:82014
-
Sohr, H. and von Wahl, W. (1986),
On the regularity of the pressure of weak solutions of Navier-Stokes equations,
Arch. Math. (Basel) 46, 428-439.
MR 87g:35190
-
Temam, R. (1977),
The Navier-Stokes equations,
North Holland.
MR 58:29439
-
Temam, R. (1983),
Navier-Stokes Equations and Nonlinear Functional Analysis,
SIAM, Philadelphia.
MR 86f:35152
-
Temam, R. (1988),
Infinite Dimensional Dynamical Systems in Mechanics and Physics,
Springer-Verlag, New York.
MR 89m:58056
-
Vishik M. I. and Fursikov, A. V. (1980),
Mathematical Problems of Statistical Hydromechanics,
Kluwer, Dordrecht.
MR 82g:35095
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|