![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes
|
Gareth O. Roberts, University of Cambridge Jeffrey S. Rosenthal, University of Toronto |
Abstract
We develop quantitative bounds on rates of convergence
for continuous-time Markov processes on general state
spaces. Our methods involve coupling and shift-coupling, and make use
of minorization and drift conditions.
In particular, we use auxiliary coupling to establish the existence of
small (or pseudo-small) sets.
We apply our method to some
diffusion examples. We are motivated by interest in the use of Langevin
diffusions for Monte Carlo simulation.
|
Full text: PDF
Pages: 1-21
Published on: May 28, 1996
|
Bibliography
-
D.J. Aldous and H. Thorisson,
Shift-coupling, Stoch. Proc. Appl. 44, (1993), 1--14.
Math Review link
-
S. Asmussen,
Applied Probability and Queues, John Wiley & Sons, New York (1987).
Math Review link
-
K.B. Athreya and P. Ney,
A new approach to the limit theory of recurrent Markov chains, Trans. Amer.
Math. Soc. 245, (1978), 493--501.
Math Review link
-
P.H. Baxendale,
Uniform estimates for geometric ergodicity of recurrent Markov chains,
Tech. Rep., Dept. of Mathematics, University of Southern California (1994).
Math Review article not available.
-
R.N. Bhattacharya and E.C. Waymire,
Stochastic processes with applications, Wiley & Sons, New York, (1990).
Math Review link
-
M.F. Chen and S.F. Li,
Coupling methods for multidimensional diffusion processes, Ann. Prob. 17,
(1989), 151--177.
Math Review link
-
P.L. Davis,
Rates of convergence to the stationary distribution for k-dimensional
diffusion processes, J. Appl. Prob. 23, (1986), 370--384.
Math Review article not available.
-
A.E. Gelfand and A.F.M. Smith,
Sampling based approaches to calculating marginal densities, J. Amer. Stat.
Assoc. 85, (1990), 398--409.
Math Review link
-
U. Grenander and M.I. Miller,
Representations of knowledge in complex systems (with discussion), J. Roy.
Stat. Soc. B 56, (1994), 549--604.
Math Review link
-
H.R. Lerche,
Boundary crossings of Brownian motion, Springer-Verlag, London, (1986).
Math Review link
-
P. Levy,
Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris,
(1965).
Math Review link
-
T. Lindvall,
Lectures on the coupling method, Wiley & Sons, New York, (1992).
Math Review link
-
T. Lindvall and L.C.G. Rogers,
Coupling of multidimensional diffusions by reflection, Ann. Prob. 14, 860--872.
Math Review link
-
S.P. Meyn and R.L. Tweedie,
Stability of Markovian processes III: Foster-Lyapunov criteria for
continuous-time processes, Adv. Appl. Prob. 25, (1993), 518--548.
Math Review link
-
S.P. Meyn and R.L. Tweedie,
Markov chains and stochastic stability, Springer-Verlag, London (1993).
Math Review link
-
S.P. Meyn and R.L. Tweedie,
Computable bounds for convergence rates of Markov chains, Ann. Appl. Prob.
4, (1994), 981--1011.
Math Review link
-
E. Nummelin,
General irreducible Markov chains and non-negative operators, Cambridge
University Press (1984).
Math Review link
-
D.B. Phillips and A.F.M. Smith,
Bayesian model comparison via jump diffusions, Tech. Rep. 94--20, Department
of Mathematics, Imperial College, London (1994).
Math Review article not available.
-
G.O. Roberts and J.S. Rosenthal,
Shift-coupling and convergence rates of ergodic averages. Preprint, (1994).
Math Review article not available.
-
G.O. Roberts and J.S. Rosenthal, Optimal scaling of discrete approximations
to Langevin diffusions, Preprint (1995).
Math Review article not available.
-
G.O. Roberts and R.L. Tweedie,
Exponential Convergence of Langevin Diffusions and their discrete
approximations, Preprint (1995).
Math Review article not available.
-
J.S. Rosenthal,
Minorization conditions and convergence rates for Markov chain Monte Carlo,
J. Amer. Stat. Assoc. 90 (1995), 558-566.
Math Review link
-
A.F.M. Smith and G.O. Roberts,
Bayesian computation via the Gibbs sampler and related Markov chain Monte
Carlo methods, J. Roy. Stat. Soc. Ser. B 55, (1993), 3--24.
Math Review link
-
H. Thorisson,
Coupling methods in probability theory, Tech. Rep. RH--18--92, Science
Institute, University of Iceland (1992).
Math Review article not available.
-
H. Thorisson,
Coupling and shift-coupling random sequences, Contemp. Math., Volume 149,
(1993).
Math Review link
-
H. Thorisson,
Shift-coupling in continuous time, Prob. Th. Rel. Fields 99, (1994),
477--483.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|