![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Exchangeable Fragmentation-Coalescence Processes and their Equilibrium Measures
|
Julien Berestycki, université de Provence, France |
Abstract
We define and study a family of Markov processes with state space
the compact set of all partitions of $N$ that we call
exchangeable fragmentation-coalescence processes. They can be
viewed as a combination of homogeneous fragmentation as defined by
Bertoin and of homogenous coalescence as defined by Pitman and
Schweinsberg or Möhle and Sagitov. We show that they admit a
unique invariant probability measure and we study some properties
of their paths and of their equilibrium measure.
|
Full text: PDF
Pages: 770-824
Published on: November 17, 2004
|
Bibliography
- D.J. Aldous, Exchangeability and related topics.
École d'été de probabilités de Saint-Flour, XIII---1983,
1--198, Lecture Notes in Math., 1117, Springer, Berlin, 1985. MR0883646
- D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists.
Bernoulli 5 (1999), no. 1, 3--48. MR1673235
-
J. Berestycki,Ranked fragmentations.
ESAIM Probab. Statist. 6 (2002), 157--175 (electronic). MR1943145
-
J. Berestycki, Multifractal spectra of fragmentation processes.
J. Statist. Phys. 113 (2003), no. 3-4, 411--430. MR2013691
-
J. Bertoin, Random fragmentation and coagulation. In preparation.
-
J. Bertoin, Homogeneous fragmentation processes.
Probab. Theory Related Fields 121 (2001), no. 3, 301--318. MR1867425
-
J. Bertoin, Self-similar fragmentations.
Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 3, 319--340. MR1899456
- J. Bertoin. The asymptotic behavior of fragmentation processes.
J. Eur. Math. Soc. (JEMS) 5 (2003), no. 4, 395--416. MR2017852
-
D. Beysens, X. Campi and E. Peffekorn (Editors), Proceedings of the workshop : Fragmentation phenomena,
Les Houches Series. World Scientific, 1995. Math. Review number not available.
- E. Bolthausen, A.-S. Sznitman, On Ruelle's probability cascades and an abstract cavity method.
Comm. Math. Phys. 197 (1998), no. 2, 247--276. MR1652734
- P. Diaconis; E. Mayer-Wolf; O. Zeitouniand M.P. Zerner, The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations.
Ann. Probab. 32 (2004), no. 1B, 915--938. MR2044670
- R. Durrett and V. Limic, A surprising Poisson process arising from a species competition model.
Stochastic Process. Appl. 102 (2002), no. 2, 301--309. MR1935129
- E.B. Dynkin, Markov processes. Vols. I, II.
Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. Die Grundlehren der Mathematischen Wi ssenschaften, Bände 121, 122 Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg 1965 Vol. I: xii+365 pp.; Vol. II: viii+274 pp. MR0193671
- S.N. Ethier and T.G. Kurtz, Thomas G. Markov processes.
Characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
- J. Jacod and A.N. Shiryaev, Albert N. Limit theorems for stochastic processes.
Second edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 2003. xx+661 pp. ISBN: 3-540-43932-3 MR1943877
- J. F. C. Kingman, On the genealogy of large populations.
Essays in statistical science.
J. Appl. Probab. 1982, Special Vol. 19A, 27--43. MR0633178
- J. F. C. Kingman, The representation of partition structures.
J. London Math. Soc. (2) 18 (1978), no. 2, 374--380. MR0509954
- A. Lambert, The branching process with logistic growth. To appear in Ann. Appl. Prob.(2004).
- M. Möhle and S. Sagitov, A classification of coalescent processes for haploid exchangeable population models.
Ann. Probab. 29 (2001), no. 4, 1547--1562. MR1880231
- J. Pitman, Coalescents with multiple collisions.
Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892
- J. Pitman, Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformation of an interval partition.
Combin. Probab. Comput. 11 (2002), no. 5, 501--514. MR1930355
- L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 1.
Foundations.
Reprint of the second (1994) edition.
Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. xx+386 pp. ISBN: 0-521-77594-9 MR1796539
- J. Schweinsberg, Coalescents with simultaneous multiple collisions.
Electron. J. Probab. 5 (2000), Paper no. 12, 50 pp. (electronic). MR1781024
- J. Schweinsberg, A necessary and sufficient condition for the $Lambda$-coalescent to come down from infinity.
Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720 (2001g:60025)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|