Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 4 (1999) > Paper 12 open journal systems 


The Longtime Behavior of Branching Random Walk in a Catalytic Medium

Andreas Greven, Universitat Erlangen-Nurnberg
Achim Klenke, Universität Erlangen - Nürnberg
Anton Wakolbinger, Johann Wolfgang Goethe-Universität


Abstract
Consider a countable collection of particles located on a countable group, performing a critical branching random walk where the branching rate of a particle is given by a random medium fluctuating both in space and time. Here we study the case where the time-space random medium (called catalyst) is also a critical branching random walk evolving autonomously while the local branching rate of the reactant process is proportional to the number of catalytic particles present at a site. The catalyst process and the reactant process typically have different underlying motions.


Full text: PDF

Pages: 1-80

Published on: April 6, 1999


Bibliography
  1. [AN] K. Athreya, P. Ney: Branching Processes, Springer Verlag, (1972). Math Review link
  2. [BEP] M.T. Barlow, S.N. Evans, and E.A. Perkins: Collision local times and measure-valued processes, Can. J. Math., 43(5), 897-938, (1991). Math Review link
  3. [B] D.L. Burkholder: Distribution function inequalities for martingales, Ann. Probab. 1, 19-42, (1973). Math Review link
  4. [D] D. A. Dawson: Measure-Valued Markov Processes. In: Ecole d'Ete de Probabilites de St.Flour XXI - 1991, LNM 1541, Springer-Verlag, (1993). Math Review link
  5. [DF1] D.A. Dawson, K. Fleischmann: On spatially homogeneous branching processes in a random environment, Math. Nachr., 113, 249-257, (1983). Math Review link
  6. [DF2] D. A. Dawson, K. Fleischmann: Critical dimension for a model of branching in a random medium, Z. Wahrsch. Verw. Gebiete 70, 315-334, (1985). Math Review link
  7. [DF3] D.A. Dawson, K. Fleischmann: A Super-Brownian motion with a single point catalyst, Stochastic Process. Appl. 49, 3-40, (1995). Math Review link
  8. [DF4] D. A. Dawson, K. Fleischmann: Super-Brownian motions in higher dimensions with absolutely continuous measure states, Journ. Theoret. Probab., 8(1), 179-206, (1995). Math Review link
  9. [DF5] D. A. Dawson, K. Fleischmann: A continuous super-Brownian motion in a super-Brownian medium. Journ. Theoret. Probab., 10(1), 213-276, (1997). Math Review link
  10. [DF6] D.A. Dawson, K. Fleischmann: Longtime behavior of a branching process controlled by branching catalysts. Stoch. Process. Appl. 71(2), 241-257, (1997). Math Review link
  11. [DG1] D. A. Dawson, A. Greven: Multiple Time Scale Analysis of Interacting Diffusions. Prob. Theory and Rel. Fields, 95, 467-508, (1993). Math Review link
  12. [DG2] D. Dawson, A. Greven: Multiple Space-Time Scale Analysis for interacting Branching Models, Electr. Journ. of Probab., Vol. 1(14), (1996). Math Review link
    http://www.emis.de/journals/EJP-ECP/EjpVol1/paper14.abs.html
  13. [DH] D. A. Dawson, K. Hochberg: A multilevel branching model, Adv. Appl. Prob. 23, 701-715, (1991). Math Review link
  14. [DHV] D.A. Dawson, K. Hochberg and V. Vinogradov: On weak convergence of branching particle systems undergoing spatial motion, Donald~A. Dawson, Kenneth~J. Hochberg, and Vladimir Vinogradov. In: Stochastic analysis: random fields and measure-valued processes (Ramat Gan, 1993/1995)}, 65-79. Bar-Ilan Univ., Ramat Gan, (1996). Math Review link
  15. [DFJ] S.W. Dharmadhiakri, V. Fabian, K. Jogdeo: Bounds on moments of martingales, Ann. Math. Statist. 39, 1719-1723, (1968). Math Review link
  16. [DS] R. Durrett, R. Schinazi: Asymptotic critical value for a competition model. Ann. Appl. Prob. 7, 1047-1066, (1993). Math Review link
  17. [Du] R. Durrett: Probability: Theory and examples (second edition) Wadsworth, (1996). Math Review link
  18. [EF] A. Etheridge, K. Fleischmann: Persistence of a two-dimensional super-Brownian motion in a catalytic medium, Probab. Theory Relat. Fields, 110(1), 1-12, (1998). Math Review link
  19. [F] K. Fleischmann: Ergodic properties of infinitely divisible stochastic point processes, Math. Nach. 102, 127-135, (1981). Math Review link
  20. [FK] K. Fleischmann, A. Klenke: Smooth density field of two-dimensional catalytic super-Brownian motion. Ann. Appl. Probab., to appear (1998).
  21. [G] A. Greven: A phase transition for the coupled branching process. Part 1. The ergodic theory in the range of finite second moments. Probab. Theory Relat. Fields 87, 417-458, (1991). Math Review link
  22. [GH] A. Greven, F. den Hollander: Branching Random Walk in Random Environment: Phase Transition for Local and Global Growth Rates. Prob. Theory and Relat. Fields, 91 (2), 195-250, (1992). Math Review link
  23. [GRW] L. G. Gorostiza, S. Roelly and A. Wakolbinger: Sur la peristance du processus de Dawson Watanabe stable (L'interversion de la limite en temps et de la renormalisation), Seminaire de Probabilites XXIV, LNM 1426, 275-281, Springer-Verlag, (1990). Math Review link
  24. [K1] O. Kallenberg: Stability of critical cluster fields, Math. Nachr. 77, 7-43, (1977). Math Review link
  25. [K2] O. Kallenberg: Random Measures, Academic Press, (1983). Math Review link
  26. [Ke] H. Kesten: Branching Random Walk with a Critical Branching Part, Journal of Theoretical Probability, Vol 8(4), 921-962, (1995). Math Review link
  27. [Kl1] A. Klenke: Different Clustering Regimes in Systems of Hierarchically Interacting Diffusions, Ann. Probab. 24, No. 2, 660-697, (1996). Math Review link
  28. [Kl2] A. Klenke: Multiple Scale Analysis of clusters in spatial branching models, Ann. Probab. 25, No. 4, 1670-1711, (1997). Math Review link
  29. [Kl3] A. Klenke: A Review on Spatial Catalytic Branching Processes, to appear in: A Festschrift in honor of Don Dawson, (1999).
  30. [L] T. M. Liggett: Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Vol. 276, Springer Verlag, (1985). Math Review link
  31. [LMW] A. Liemant, K. Matthes, A. Wakolbinger: Equilibrium Distributions of Branching Processes, Akademie-Verlag Berlin, (1988). Math Review link
  32. [LW] J.A. Lopez-Mimbela, A. Wakolbinger, Clumping in multitype-branching trees, Adv. in Appl. Probab. 28, (1996). Math Review link
  33. [P] E. A. Perkins: The Hausdorff measure of the closed support of super-Brownian motion, Ann. Inst. H. Poincare, 25, 205-224, (1989). Math Review link
  34. [Pr] M. H. Protter, H. F. Weinberger: Maximum Principles of Differential Equations. Prentice-Halle, Englewood Cliffs, NJ, (1967). Math Review link
  35. [T] D. Tanny: A necessary and sufficient condotion condition for a branching process in a random environment to grow like the product of its means. Stochastic Process. Appl. 28, 123-139, (1988). Math Review link
  36. [W] A. Wakolbinger: Limits of spatial branching populations. Bernoulli Vol. 1, No. 1/2, 171-190, (1995). Math Review link
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489