![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Longtime Behavior of Branching Random Walk in a Catalytic Medium
|
Andreas Greven, Universitat Erlangen-Nurnberg Achim Klenke, Universität Erlangen - Nürnberg Anton Wakolbinger, Johann Wolfgang Goethe-Universität |
Abstract
Consider a countable collection
of particles located
on a countable group,
performing a critical
branching random walk
where the branching rate
of a particle is given by a random medium fluctuating both in space and time.
Here we
study the case where the time-space random medium (called
catalyst)
is also a critical branching random walk
evolving autonomously while
the local branching rate of the reactant process
is proportional to the
number of catalytic particles present at a site.
The catalyst process
and
the reactant process typically have different
underlying motions.
|
Full text: PDF
Pages: 1-80
Published on: April 6, 1999
|
Bibliography
-
[AN]
K. Athreya, P. Ney: Branching Processes, Springer Verlag,
(1972).
Math Review link
-
[BEP]
M.T. Barlow, S.N. Evans, and E.A. Perkins:
Collision local times and measure-valued processes,
Can. J. Math., 43(5), 897-938, (1991).
Math Review link
-
[B]
D.L. Burkholder:
Distribution function inequalities for martingales,
Ann. Probab. 1, 19-42, (1973).
Math Review link
-
[D]
D. A. Dawson:
Measure-Valued Markov Processes.
In: Ecole d'Ete de Probabilites de St.Flour XXI - 1991,
LNM 1541, Springer-Verlag, (1993).
Math Review link
-
[DF1]
D.A. Dawson, K. Fleischmann:
On spatially homogeneous branching processes in a random environment,
Math. Nachr., 113, 249-257, (1983).
Math Review link
-
[DF2]
D. A. Dawson, K. Fleischmann:
Critical dimension for a model of
branching in a random medium, Z. Wahrsch. Verw. Gebiete 70, 315-334,
(1985).
Math Review link
-
[DF3]
D.A. Dawson, K. Fleischmann: A Super-Brownian motion
with a single point catalyst, Stochastic Process. Appl. 49, 3-40,
(1995).
Math Review link
-
[DF4]
D. A. Dawson, K. Fleischmann: Super-Brownian motions in higher dimensions with
absolutely continuous measure states, Journ. Theoret. Probab., 8(1),
179-206, (1995).
Math Review link
-
[DF5]
D. A. Dawson, K. Fleischmann: A continuous
super-Brownian motion in a super-Brownian medium.
Journ. Theoret. Probab., 10(1), 213-276, (1997).
Math Review link
-
[DF6]
D.A. Dawson, K. Fleischmann: Longtime behavior of a
branching process controlled by branching catalysts.
Stoch. Process. Appl. 71(2), 241-257, (1997).
Math Review link
-
[DG1]
D. A. Dawson, A. Greven:
Multiple Time Scale Analysis of Interacting Diffusions.
Prob. Theory and Rel. Fields, 95, 467-508, (1993).
Math Review link
-
[DG2]
D. Dawson, A. Greven: Multiple Space-Time Scale Analysis
for interacting Branching Models, Electr. Journ. of Probab.,
Vol. 1(14), (1996).
Math Review link
http://www.emis.de/journals/EJP-ECP/EjpVol1/paper14.abs.html
-
[DH]
D. A. Dawson, K. Hochberg: A multilevel branching
model, Adv. Appl. Prob. 23, 701-715, (1991).
Math Review link
-
[DHV]
D.A. Dawson, K. Hochberg and V. Vinogradov: On weak
convergence
of branching particle systems undergoing spatial motion,
Donald~A. Dawson, Kenneth~J. Hochberg, and Vladimir Vinogradov.
In: Stochastic analysis: random fields and
measure-valued processes (Ramat Gan, 1993/1995)}, 65-79. Bar-Ilan Univ.,
Ramat Gan, (1996).
Math Review link
-
[DFJ] S.W. Dharmadhiakri, V. Fabian, K. Jogdeo:
Bounds on moments of martingales,
Ann. Math. Statist. 39, 1719-1723, (1968).
Math Review link
-
[DS]
R. Durrett, R. Schinazi: Asymptotic critical
value for a competition model. Ann. Appl. Prob. 7,
1047-1066, (1993).
Math Review link
-
[Du]
R. Durrett: Probability: Theory and examples (second edition)
Wadsworth, (1996).
Math Review link
-
[EF]
A. Etheridge, K. Fleischmann:
Persistence of a
two-dimensional super-Brownian motion in a catalytic medium,
Probab. Theory Relat. Fields, 110(1), 1-12, (1998).
Math Review link
-
[F]
K. Fleischmann: Ergodic properties of infinitely divisible
stochastic point processes, Math. Nach. 102, 127-135, (1981).
Math Review link
-
[FK]
K. Fleischmann, A. Klenke: Smooth density field of
two-dimensional catalytic super-Brownian motion.
Ann. Appl. Probab., to appear (1998).
-
[G]
A. Greven: A phase transition for the coupled
branching process. Part 1. The ergodic theory in the range of finite
second moments. Probab. Theory Relat. Fields 87, 417-458,
(1991).
Math Review link
-
[GH]
A. Greven, F. den Hollander:
Branching Random Walk in Random Environment:
Phase Transition for Local and Global Growth Rates. Prob. Theory and
Relat. Fields, 91 (2), 195-250, (1992).
Math Review link
-
[GRW] L. G. Gorostiza, S. Roelly and A. Wakolbinger:
Sur la peristance du processus de Dawson Watanabe stable (L'interversion de la
limite en temps et de la renormalisation), Seminaire de Probabilites
XXIV, LNM 1426, 275-281, Springer-Verlag, (1990).
Math Review link
-
[K1]
O. Kallenberg: Stability of critical cluster fields, Math.
Nachr. 77, 7-43, (1977).
Math Review link
-
[K2]
O. Kallenberg: Random Measures, Academic Press, (1983).
Math Review link
-
[Ke] H. Kesten: Branching Random Walk with a
Critical Branching Part, Journal of Theoretical Probability,
Vol 8(4), 921-962, (1995).
Math Review link
-
[Kl1] A. Klenke: Different Clustering Regimes in Systems of
Hierarchically Interacting Diffusions, Ann. Probab. 24, No. 2,
660-697, (1996).
Math Review link
-
[Kl2] A. Klenke: Multiple Scale Analysis of clusters in spatial
branching models, Ann. Probab. 25, No. 4, 1670-1711, (1997).
Math Review link
- [Kl3] A. Klenke: A Review on Spatial Catalytic Branching
Processes, to appear in: A Festschrift in honor of Don Dawson,
(1999).
-
[L] T. M. Liggett: Interacting Particle Systems, Grundlehren der
mathematischen Wissenschaften, Vol. 276, Springer Verlag, (1985).
Math Review link
-
[LMW] A. Liemant, K. Matthes, A. Wakolbinger:
Equilibrium Distributions of Branching Processes, Akademie-Verlag Berlin,
(1988).
Math Review link
-
[LW] J.A. Lopez-Mimbela, A. Wakolbinger, Clumping
in multitype-branching trees, Adv. in Appl. Probab. 28, (1996).
Math Review link
-
[P] E. A. Perkins: The Hausdorff measure of the closed support of
super-Brownian motion, Ann. Inst. H. Poincare, 25, 205-224, (1989).
Math Review link
-
[Pr] M. H. Protter, H. F. Weinberger: Maximum Principles of
Differential Equations. Prentice-Halle, Englewood Cliffs, NJ, (1967).
Math Review link
-
[T] D. Tanny: A necessary and sufficient condotion
condition for a branching process in a random environment to
grow like the product of its means. Stochastic Process. Appl.
28, 123-139, (1988).
Math Review link
-
[W] A. Wakolbinger: Limits of spatial branching populations.
Bernoulli Vol. 1, No. 1/2, 171-190, (1995).
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|