![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
An Extended Generator and Schrödinger Equations
|
Ronald K. Getoor, University of California, San Diego |
Abstract
The generator of a Borel right processis extended so that it maps
functions to smooth measures. This extension may be defined either
probabilistically using martingales or analytically in terms of certain
kernels on the state space of the process. Then the associated
Schrödinger equation with a (signed) measure serving as potential
may be interpreted as an equation between measures. In this context general
existence and uniqueness theorems for solutions are established. These are
then specialized to obtain more concrete results in special situations.
|
Full text: PDF
Pages: 1-23
Published on: November 16, 1999
|
Bibliography
- S. Albeverio, J. Brasche and M. Röckner,
Dirichlet forms and generalized Schr"odinger operators,
Lecture Notes in Physics 345, Springer, 1989, pp. 1-42.
Math. Review
MR91c:47103
- J. Azéma, Théorie générale des
processus et retournement du temps, Ann. Sci. de l'Ecole Norm. Sup.
6 (1973), 459-519.
Math. Review
MR51:1977
- R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory,
Academic Press, New York, 1968.
Math. Review
MR41:9348
- A. Boukricha, W. Hansen and H. Hueber,
Continuous solutions of the generalized Schrödinger equation
and perturbation of harmonic spaces, Expo. Math. 5 (1987), 97-135.
Math. Review
MR88g:31019
- K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger's Equation,
Springer, Berlin, Heidelberg, New York, 1995.
Math. Review
MR96f:60140
- E. Çinlar, J. Jacod, P. Protter and M. J. Sharpe,
Semimartingales and Markov processes, Z. Wahrsheinlichkeitstheorie
54, (1980), 161-219.
Math. Review
MR82h:60084
- C. Dellacherie and P.-A. Meyer,
Probabilités et Potentiel,
Ch. I-IV (1975), Ch. V-VIII (1980), Ch. IX-XI (1983), Ch. XII-XVI (1987)
Hermann, Paris.
Math. Review
MR58:7757
- E. B. Dynkin, Markov Processes, Vol. 1, Springer,
Berlin, Heidelberg, New York, 1965.
Math. Review
MR33:1887
- D. Feyel and A. de La Pradelle,
Étude de l'équation
où $mu$
est une mesure positive, Ann. Inst. Fourier, Grenoble 38
(1988), 199-218.
Math. Review
MR90j:35074
- P. J. Fitzsimmons and R. K. Getoor, Revuz measures and time changes,
Math. Z. 199 (1988), 233-256.
Math. Review
MR89h:60124
- P. J. Fitzsimmons and R. K. Getoor, Smooth measures and continuous
additive functionals of right Markov processes,
Itò's Stochastic Calculus and Probability Theory, Springer,
Berlin, Heidelberg, New York, 1996, pp. 31-49.
Math. Review
MR98g:60137
- R. K. Getoor, Excessive Measures, Birkhauser, Boston, 1990.
Math. Review
MR92i:60135
- R. K. Getoor, Measure perturbations of Markovian semigroups,
Potential Analysis 11 (1999), 101-133.
Math. Review
1 703 827
- R. K. Getoor and M. J. Sharpe, Naturality, standardness and weak duality,
Z. Wahrsheinlichkeitstheorie verw. Geb. 67 (1984), 1-62.
Math. Review
MR86f:60093
- R. K. Getoor and J. Steffens, The energy functional, balayage and capacity,
Ann. Inst. Henri Poincaré 23 (1987), 321-357.
Math. Review
MR89b:60178
- W. Hansen, A note on continuous solutions of the Schrödinger equation,
Proc. AMS 117 (1993), 381-384.
Math. Review
MR93d:35032
- H. Kunita, Absolute continuity of Markov processes and generators,
Nagoya Math. J. 36 (1969), 1-26.
Math. Review
MR40:3626
- Z. Ma, Some new results concerning Dirichlet forms, Feynman-Kac
semigroups and Schrödinger equations,
Contemporary Math. 118 (1991), 239-254.
Math. Review
MR93d:31008
- D. Revuz, Mesures associées aux fonctionnelles additive de Markov I,
Trans. AMS 148 (1970), 501-531.
Math. Review
MR43:5611
- M. J. Sharpe, General Theory of Markov Processes,
Academic Press, Boston, San Diego, New York, 1988.
Math. Review
MR89m:60169
- P. Stollmann and J. Voigt, Perturbations of Dirichlet forms by measures,
Potential Analysis 5 (1996), 109-139.
Math. Review
MR97e:47065
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|