Small-time Asymptotic Estimates in Local Dirichlet Spaces
Teppei Ariyoshi, Tokio Marine & Nichido Fire Insurance Co., Ltd. Masanori Hino, Kyoto University
Abstract
Small-time asymptotic estimates of semigroups on a logarithmic scale are proved for all symmetric local Dirichlet forms on σ-finite measure spaces, which is an extension of the work by Hino and Ramírez [4].
L.-E. Andersson.
On the representation of Dirichlet forms.
Collection of articles dedicated to Marcel Brelot on the occasion of his 70th birthday.
Ann. Inst. Fourier, Grenoble 25 (1975), 11-25.
MR0417436 (54 #5486)
N. Bouleau and F. Hirsch.
Dirichlet forms and analysis on Wiener space.
Walter de Gruyter, Berlin, 1991.
MR1133391 (93e:60107)
M. Fukushima, Y. Oshima and M. Takeda.
Dirichlet forms and symmetric Markov processes.
Walter de Gruyter, Berlin, 1994.
MR1303354 (96f:60126)
M. Hino and J. A. Ramírez.
Small-time Gaussian behavior of symmetric diffusion semigroups.
Ann. Probab. 31 (2003), 1254-1295.
MR1988472 (2004f:60167)
Z. M. Ma and M. Röckner.
Introduction to the theory of (non-symmetric) Dirichlet forms.
Springer, Berlin, 1992.
MR1214375 (94d:60119)
J. R. Norris.
Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds.
Acta Math. 179 (1997), 79-103.
MR1484769 (99d:58167)
J. A. Ramírez.
Short time asymptotics in Dirichlet spaces.
Comm. Pure Appl. Math. 54 (2001), 259-293.
MR1809739 (2002f:60108)
J. P. Roth.
Formule de représentation et troncature des formes de Dirichlet sur Rm.
in Séminaire de Théorie du Potentiel Paris,
pp. 260-274, Lecture Notes in Math. 563,
Springer, Berlin, 1976.
MR0588398 (58 #28571)