![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The FBM Itô's Formula Through Analytic Continuation
|
D. Feyel, Université Evry A. de La Pradelle, Université Paris VI |
Abstract
The Fractional Brownian Motion can be extended to complex
values of the parameter $alpha $ for $Realpha >{1over 2}$. This is a
useful tool. Indeed, the obtained process depends holomorphically on the
parameter, so that many formulas, as Itô formula, can be extended by
analytic continuation. For large values of $Realpha $, the stochastic
calculus reduces to a deterministic one, so that formulas are very easy to
prove. Hence they hold by analytic continuation for $Realpha le 1$, containing
the classical case $alpha =1$.
|
Full text: PDF
Pages: 1-22
Published on: October 1, 2001
|
Bibliography
-
E. Alòs and D. Nualart,
An extension of Itô's formula for anticipating processes.
In Journal of Theoretical Probability, 11, 493-514 (1998)
Math Reviews 99k:60137
-
E. Alòs, 0. Mazet and D. Nualart,
Stochastic calculus with respect to Gaussian processes.
In Annals of Probability, 29, 76-801 (2001)
Math Reviews link not available.
-
E. Alòs, 0. Mazet and D. Nualart,
Stochastic calculus with respect to fractional Brownian motion with
Hurst parameter lesser than 1/2.
In Stoch. processes and applications, 86, 121-139, (2000)
Math Reviews 2000m:60059
-
E. Alòs, J.A. León and D. Nualart,
Stochastic stochastic calculus for fractional Brownian motion with
Hurst parameter lesser than 1/2.
In Taiwanesse J. of Math. 5, no 3, 609-632, (2001)
Math Reviews link not available.
-
A. Ayache, S. L&ecute;ger, M. Pontier,
Drap brownien fractionnaire.
To appear in Potential Analysis
Math Reviews link not available
-
P. Carmona and L. Coutin,
Stochastic integration with respect to fractional Brownian motion.
In CRAS, Paris, Série I, t.330, 231-236, (2000)
Math Reviews 2001c:60088
-
W. Dai and C. C. Heyde,
Itô's formula with respect to fractional
Brownian motion and its application.
In Journal of Appl. Math. and Stoch. An., 9, 439-448 (1996)
Math Reviews 98f:60104
-
L. Decreusefond,
Regularity properties of some stochastic Volterra
integrals with singular kernels.
Preprint, 2000
-
L. Decreusefond and A. S. Üstünel,
Stochastic analysis of the fractional Brownian motion.
In Potential Analysis, 10, 177-214 (1998)
Math Reviews 2000b:60133
-
T.E. Duncan, Y. Hu and B. Pasik-Duncan,
Stochastic calculus for fractional Brownian motion. I. Theory.
In SIAM J. Control Optim. 38 (2000), no 2, 582-612
Math Reviews 2001g:60129
-
D. Feyel and A. de la Pradelle,
Espaces de Sobolev gaussiens.
In Ann.Inst.Fourier, t.39, fasc.4, p.875-908, (1989)
Math Reviews 91e:60183
-
D. Feyel and A. de la Pradelle,
Capacités gaussiennes.
In Ann. Inst. Fourier, t.41, f.1, p.49-76, (1991)
Math Reviews 93b:60174
-
D. Feyel and A. de la Pradelle,
Opérateurs linéaires gaussiens.
In Proc. ICPT91, Ed. Bertin, Potential Analysis, vol 3,1, p.89-106 (1994)
Math Reviews 95g:60050
-
D. Feyel and A. de la Pradelle,
Fractional Integrals and Brownian Processes.
In Publication de l'Université d'Evry Val d'Essonne, (1996)
Math Reviews link not available.
-
D. Feyel and A. de la Pradelle,
On fractional Brownian processes.
In Potential Analysis, 10, 273-288 (1999)
Math Reviews 2000j:60051
-
D. Feyel,
Polynômes harmoniques et inégalités de Nelson.
In Publication de l'Université d'Evry Val d'Essonne, 1995.
Math Reviews link not avilable.
-
B. Gaveau and P. Trauber,
L'intégrale stochastique comme opérateur de divergence
dans l'espace fonctionnel.
In J. Functional Analysis, 46, 230-238 (1982)
Math Reviews 83j:60057
-
M. L. Kleptsyna, P. E. Kloeden and V. V. Anh,
Existence and uniqueness theorems for stochastic
differential equations with fractal Brownian motion.
Problems Inform. Transmission 34 (1999), no 4, 332-341
Math Reviews 2001k:60079
-
S. J. Lin,
Stochastic analysis of fractional Brownian motions.
In Stochastics and Stoch. Reports, 55, 121-140 (1995)
Math Reviews 97j:60095
-
B. B. Mandelbrot and J. W. Van Ness,
Fractional Brownian motions, fractional noises and applications.
In SIAM Review, 10(4), 422-437 (1968)
Math Reviews 39#3572
-
J. Marcinkiewicz,
Sur les multiplicateurs des séries de Fourier.
In Studia Mathematica, 8, 139-40 (1939)
Math Reviews link not available.
-
D. Nualart and E. Pardoux,
Stochastic calculus with anticipating integrands.
In Prob. Theory Rel. Fields, 78, 535-581 (1988)
Math Reviews 89h:60089
-
I. Norros, E. Valkeila and J. Virtamo,
An elementary approach to a Girsanov formula and other
analytical results on fractional Brownian motion.
In Bernoulli, 5, 571-587 (1999)
Math Reviews 2000f:60053
-
N. Privault,
Skorohod stochastic integration with respect to a non-adapted
process on Wiener space.
In Stochastics and Stochastics Reports, 65, 13-39, (1998)
Math Reviews 2000d:60095
-
A. V. Skorohod,
On a generalization of a stochastic integral.
In Theory Probab. Appl., 20, 219-233 (1975)
Math Reviews 52 #12079
-
A. S. Üstünel,
The Itô formula for anticipative processes with non-monotonous
time scale via the Malliavin calculus.
In Probability Theory and Related Fields 79, 249-269 (1988)
Math Reviews 90e:60067
-
M. Zähle,
Integration with respect to fractal functions and stochastic calculus, I.
In Probability Theory and Related Fields 111, 333-374, (1998)
Math Reviews 99j:60073
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|