![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Martingales on Random Sets and the Strong Martingale Property
|
Michael J. Sharpe, University of California, San Diego |
Abstract
Let X be a process defined
on an optional random set. The paper develops two different
conditions on
X guaranteeing that it is the restriction of a
uniformly integrable martingale. In each case, it is supposed
that X is the restriction of some special
semimartingale Z with canonical decomposition Z=M+A. The
first condition, which is both necessary and sufficient, is an
absolute continuity condition on A. Under additional
hypotheses, the existence of a martingale extension can be
characterized by a strong martingale property of X.
Uniqueness of the
extension is also considered.
|
Full text: PDF
Pages: 1-17
Published on: December 16, 1999
|
Bibliography
-
Dellacherie, C. and Meyer, P.-A. (1975),
Probabilites et
Potentiel, 2nd ed;
Chapitres I-IV, Hermann, Paris.
Math. Review 58:7757
-
Dellacherie, C. and Meyer, P.-A. (1980),
Probabilites et
Potentiel, 2nd ed;
Chapitres V-VIII, Hermann, Paris.
Math. Review 82b:60001
-
Jeulin, T. (1980), Semi-Martingales et Grossissement d'une
Filtration,
Lecture Notes in Mathematics 833, Springer, Berlin Heidelberg New York.
Math. Review 82h:60106
-
Maisonneuve, B. (1977) Une mise au point
sur les martingales
locales definies sur un intervalle stochastique,
Lecture Notes in Mathematics 581, Springer, Berlin Heidelberg New York, 435-445.
Math. Review 57:14127
-
Sharpe, M. J. (1988), General Theory of Markov
Processes, Academic Press, San Diego.
Math. Review 89m:60169
-
Sharpe, M. J. (1992), Closing values of martingales with finite lifetimes,
Seminar on Stochastic Processes 1991, Birkhauser, Boston Basel Berlin, 169-186.
Math. Review 93g:60092
-
Yan, J.-A. (1982),
Martingales locales sur un ouvert droit
optionnel,
Stochastics 8, 161-180.
Math. Review 85d:60089
-
Zheng, W. A. (1982),
Semimartingales in predictable random open
sets, Lecture Notes in Mathematics 920, Springer, Berlin Heidelberg New York, 370-379.
Math. Review 83k:60052
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|