  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
Martingales on Random Sets and the Strong Martingale Property	   
  
	 | 
  
 
	  
		 
			
			   
Michael J. Sharpe, University of California, San Diego 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	Let X be a process defined
on an optional random set. The paper develops two different
 conditions on
X guaranteeing that it is the restriction of a
uniformly integrable martingale. In each case, it is supposed
that X is the restriction of some special
semimartingale Z with canonical decomposition Z=M+A. The
first condition, which is both necessary and sufficient, is an
absolute continuity condition on A. Under additional
hypotheses, the existence of a martingale extension can be
characterized by a strong martingale property of X.
Uniqueness of the
extension is also considered.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 1-17
  Published on: December 16, 1999
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
- 
Dellacherie, C. and Meyer, P.-A. (1975),
Probabilites et
Potentiel, 2nd ed;
 Chapitres I-IV,  Hermann, Paris.
Math. Review 58:7757
 
 - 
Dellacherie, C. and Meyer, P.-A. (1980),
Probabilites et
Potentiel, 2nd ed;
 Chapitres V-VIII, Hermann, Paris.
Math. Review 82b:60001
 
 - 
Jeulin, T. (1980), Semi-Martingales et Grossissement d'une
Filtration,
Lecture Notes in  Mathematics 833, Springer, Berlin Heidelberg New York. 
Math. Review 82h:60106
 - 
Maisonneuve, B. (1977) Une mise au point
 sur les martingales
locales definies sur un intervalle stochastique, 
Lecture Notes in  Mathematics 581, Springer, Berlin Heidelberg New York, 435-445.
Math. Review 57:14127
 - 
Sharpe, M. J. (1988), General Theory of Markov 
Processes, Academic Press, San Diego.
Math. Review 89m:60169
 - 
Sharpe, M. J. (1992), Closing values of martingales with finite lifetimes,
Seminar on Stochastic Processes 1991, Birkhauser, Boston Basel Berlin, 169-186.
Math. Review 93g:60092
 - 
Yan, J.-A. (1982),
Martingales locales sur un ouvert droit
optionnel, 
Stochastics 8, 161-180.
Math. Review 85d:60089
 - 
Zheng, W. A. (1982),
Semimartingales in predictable random open
sets, Lecture Notes in  Mathematics 920, Springer, Berlin Heidelberg New York, 370-379.
Math. Review 83k:60052
  
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 	 | 
	 |