![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A Hölderian FCLT for some multiparameter summation process of independent non-identically distributed random variables
|
Vaidotas Zemlys, Vilnius University |
Abstract
We introduce a new construction of a summation process based on the collection
of rectangular subsets of unit d-dimensional cube for a triangular array of
independent non-identically distributed variables with d-dimensional index,
using the non-uniform grid adapted to the variances of the variables. We
investigate its convergence in distribution in some Holder spaces. It turns out
that for dimensions greater than 2, the limiting process is not necessarily
the standard Brownian sheet. This contrasts with a classical result of
Prokhorov for the one-dimensional case.
|
Full text: PDF
Pages: 2259-2282
Published on: December 21, 2008
|
Bibliography
- Bickel, P. J., Wichura, M. J. Convergence criteria for multiparameter
stochastic processes and some applications. Ann. Math. Statist.
42 (1971), 1656--1670. MR0383482 (52 #4363)
- Goldie, Charles M., Greenwood, Priscilla E. Characterisations of
set-indexed Brownian motion and associated conditions for finite-dimensional
convergence. Ann. Probab. 14 (1986), no. 3, 802--816. MR0841585 (88e:60038a)
- Goldie, Charles M., Greenwood, Priscilla E. Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes.
Ann. Probab. 14 (1986), no. 3, 817--839.
MR0841586
(88e:60038b)
- Khoshnevisan, Davar. Multiparameter processes. An introduction to random
fields. Springer Monographs in Mathematics. Springer-Verlag, New York, 2002. xx+584 pp. ISBN: 0-387-95459-7
MR1914748 (2004a:60003)
- Prohorov, Yu. V. Convergence of random processes and limit theorems in
probability theory.
(Russian) Teor. Veroyatnost. i Primenen. 1 (1956), 177--238.
MR0084896 (18,943b)
MR0084896 (18,943b)
- Rackauskas, Alfredas, Suquet, Charles. Holder versions of Banach space valued random fields. Dedicated to Professor Nicholas Vakhania on the occasion of his 70th birthday.
Georgian Math. J. 8 (2001), no. 2, 347--362. MR1851042 (2002f:60070)
- Rackauskas, A., Suquet, Ch. Principe d'invariance holderien pour des
tableaux triangulaires de variables aleatoires. [Holderian invariance principle
for triangular arrays of random variables] (French) Liet. Mat. Rink.
43 (2003), no. 4, 513--532; translation in Lithuanian Math.
J. 43 (2003), no. 4, 423--438 MR2058924 (2005f:60087)
- Rackauskas, A., Suquet, C. Central limit theorems in Holder topologies for
Banach space valued random fields. Teor. Veroyatn. Primen. 49 (2004),
no. 1, 109--125; translation in Theory Probab. Appl. 49 (2005), no. 1, 77--92
MR2141332 (2006b:60011)
- Rackauskas, Alfredas, Suquet, Charles. Holder norm test statistics for
epidemic change. J. Statist. Plann. Inference 126 (2004), no. 2, 495--520.
MR2088755 (2005k:62129)
- Rackauskas, Alfredas, Suquet, Charles. Testing epidemic changes of infinite
dimensional parameters. Stat. Inference Stoch. Process. 9 (2006), no. 2, 111--134.
MR2249179 (2008f:62107)
- Rackauskas, Alfredas, Suquet, Charles, Zemlys, Vaidotas. A Holderian
functional central limit theorem for a multi-indexed summation process.
Stochastic Process. Appl. 117 (2007), no. 8, 1137--1164.
MR2340883 (2008e:60086)
- Rackauskas, A., Zemlys, V. Functional central limit theorem for a
double-indexed summation process. Liet. Mat. Rink. 45 (2005), no. 3,
401--412; translation in Lithuanian Math. J. 45 (2005), no. 3, 324--333 MR2192992 (2006k:60064)
MR2192992 (2006k:60064)
- van der Vaart, Aad W., Wellner, Jon A. Weak convergence and empirical
processes. With applications to statistics. Springer Series in Statistics.
Springer-Verlag, New York, 1996. xvi+508 pp. ISBN: 0-387-94640-3 MR1385671 (97g:60035)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|