![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Hydrodynamic limit fluctuations of super-Brownian motion with a stable catalyst
|
Klaus Fleischmann, Weierstrass Institute for Applied Analysis and Stochastics, Berlin Peter Mörters, University of Bath Vitali Wachtel, Weierstrass Institute for Applied Analysis and Stochastics, Berlin |
Abstract
We consider the behaviour of a continuous super-Brownian motion
catalysed by a random medium with infinite overall density under
the hydrodynamic scaling of mass, time, and space. We show that,
in supercritical dimensions, the scaled process converges
to a macroscopic heat flow,
and the appropriately rescaled random fluctuations
around this macroscopic flow are asymptotically bounded,
in the sense of log-Laplace transforms,
by generalised stable Ornstein-Uhlenbeck processes.
The most interesting new effect we observe
is the occurrence of an index-jump from a Gaussian situation
to stable fluctuations of index 1+γ, where γ ∈ (0,1)
is an index associated to the medium.
|
Full text: PDF
Pages: 723-767
Published on: August 27, 2006
|
Bibliography
-
D.A. Dawson.
Limit theorems for interaction free geostochastic systems.
In Point Processes and Queuing Problems, volume 24 of
Coll. Math. Soc. János Bolyai, pages 27-47,
Keszthely (Hungary), 1978.
Math. Review 84c:60126
-
D.A. Dawson.
Measure-valued Markov processes.
In P.L. Hennequin, editor, École d'Été de Probabilités
de Saint Flour XXI-1991, volume 1541 of Lecture Notes Math., pages
1-260. Springer-Verlag, Berlin, 1993.
Math. Review 94m:60101
-
D.A. Dawson and K. Fleischmann.
On spatially homogeneous branching processes in a random environment.
Math. Nachr., 113:249-257, 1983.
Math. Review 85c:60133
-
D.A. Dawson and K. Fleischmann.
Critical dimension for a model of branching in a random medium.
Z. Wahrscheinlichkeitstheorie verw. Gebiete, 70:315-334, 1985.
Math. Review 87g:60072
-
D.A. Dawson and K. Fleischmann.
Diffusion and reaction caused by point catalysts.
SIAM J. Appl. Math., 52:163-180, 1992.
Math. Review 93e:35055
-
D.A. Dawson and K. Fleischmann.
Catalytic and mutually catalytic super-Brownian motions.
In Ascona 1999 Conference, volume 52 of Progress in
Probability, pages 89-110. Birkhäuser Verlag, 2002.
Math. Review MR1958811
-
D.A. Dawson, K. Fleischmann, and L. Gorostiza.
Stable hydrodynamic limit fluctuations of a critical branching
particle system in a random medium.
Ann. Probab., 17:1083-1117, 1989.
Math. Review 90k:60161
-
D.A. Dawson, K. Fleischmann, and P. Mörters.
Strong clumping of super-Brownian motion in a stable catalytic
medium.
Ann. Probab., 30(4):1990-2045, 2002.
Math. Review 2004d:60258
-
A. De Masi and E. Presutti.
Mathematical Methods for Hydrodynamic Limits, volume 1501 of
Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1991.
Math. Review 93k:60234
-
P. Dittrich.
Limit theorems for branching diffusions in hydrodynamical rescaling.
Math. Nachr., 131:59-72, 1987.
Math. Review 88k:60091
-
A.M. Etheridge.
An Introduction to Superprocesses, volume 20 of Univ.
Lecture Series.
AMS, Rhode Island, 2000.
Math. Review 2001m:60111
-
R.A. Holley and D.W. Stroock.
Generalized Ornstein-Uhlenbeck processes and infinite particle
branching Brownian motions.
Publ. Res. Inst. Math. Sci., 14(3):741-788, 1978.
Math. Review 82g:60108
-
I. Karatzas and S.E. Shreve.
Brownian Motion and Stochastic Calculus, volume 113 of
Graduate Texts in Mathematics.
Springer-Verlag, New York, 2nd edition, 1991.
Math. Review 92h:60127
-
C. Kipnis and C. Landim.
Scaling Limits of Interacting Particle Systems, volume 320 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences].
Springer-Verlag, Berlin, 1999.
Math. Review 2000i:60001
-
A. Klenke.
A review on spatial catalytic branching.
In Luis G. Gorostiza and B. Gail Ivanoff, editors, Stochastic
Models, volume 26 of CMS Conference Proceedings, pages 245-263. Amer.
Math. Soc., Providence, 2000.
Math. Review 2002a:60142
-
J.-F. Le Gall.
Sur la saucisse de Wiener et les points multiples du mouvement
Brownien.
Ann. Probab., 14(4):1219-1244, 1986.
Math. Review 88e:60097
-
A. Müller and D. Stoyan.
Comparison Methods for Stochastic Models and Risks.
Wiley, Chichester, 2002.
Math. Review 2003d:60003
-
E.A. Perkins.
Dawson-Watanabe superprocesses and measure-valued diffusions.
In P. Bernard, editor, École d'Été de Probabilités de
Saint Flour XXIX-1999, Lecture Notes Math., pages 125-329, Springer-Verlag, Berlin, 2002.
Math. Review 2003k:60104
-
D. Revuz and M. Yor.
Continuous Martingales and Brownian Motion.
Springer-Verlag, Berlin, 1991.
Math. Review 92d:60053
-
H. Spohn.
Large Scale Dynamics of Interacting Particles.
Texts and Monographs in Physics No. 342,
Springer-Verlag, Heidelberg, 1991.
Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|