Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 10 (2005) > Paper 39 open journal systems 


Representation Theorems for Interacting Moran Models, Interacting Fisher-Wrighter Diffusions and Applications

Andreas Greven, University of Erlangen-Nuernberg
Vlada Limic, University of British Columbia
Anita Winter, University of Erlangen-Nuernberg


Abstract
We consider spatially interacting Moran models and their diffusion limit which are interacting Fisher-Wright diffusions. The Moran model is a spatial population model with individuals of different type located on sites given by elements of an Abelian group. The dynamics of the system consists of independent migration of individuals between the sites and a resampling mechanism at each site, i.e., pairs of individuals are replaced by new pairs where each newcomer takes the type of a randomly chosen individual from the parent pair. Interacting Fisher-Wright diffusions collect the relative frequency of a subset of types evaluated for the separate sites in the limit of infinitely many individuals per site. One is interested in the type configuration as well as the time-space evolution of genealogies, encoded in the so-called historical process. The first goal of the paper is the analytical characterization of the historical processes for both models as solutions of well-posed martingale problems and the development of a corresponding duality theory. For that purpose, we link both the historical Fisher-Wright diffusions and the historical Moran models by the so-called look-down process. That is, for any fixed time, a collection of historical Moran models with increasing particle intensity and a particle representation for the limiting historical interacting Fisher-Wright diffusions are provided on one and the same probability space. This leads to a strong form of duality between spatially interacting Moran models, interacting Fisher-Wright diffusions on the one hand and coalescing random walks on the other hand, which extends the classical weak form of moment duality for interacting Fisher-Wright diffusions. Our second goal is to show that this representation can be used to obtain new results on the long-time behavior, in particular (i) on the structure of the equilibria, and of the equilibrium historical processes, and (ii) on the behavior of our models on large but finite site space in comparison with our models on infinite site space. Here the so-called finite system scheme is established for spatially interacting Moran models which implies via the look-down representation also the already known results for interacting Fisher-Wright diffusions. Furthermore suitable versions of the finite system scheme on the level of historical processes are newly developed and verified. In the long run the provided look-down representation is intended to answer questions about finer path properties of interacting Fisher-Wright diffusions.


Full text: PDF

Pages: 1286-1358

Published on: November 14, 2005


Bibliography
  1. Aldous, David. Stopping times and tightness. II. Ann. Probab. 17 (1989), no. 2, 586-595. MR 90f:60002
  2. Bhattacharya, R.N. and Rao, R.R. Normal approximation and asymptotic expansions. Wiley New-York, (1976). MR 55#9219
  3. Bramson, Maury; Cox, J. Theodore; Griffeath, David. Consolidation rates for two interacting systems in the plane. Probab. Theory Related Fields 73 (1986), no. 4, 613-625. MR0863549 (88b:60229)
  4. Bramson, Maury; Griffeath, David. Asymptotics for interacting particle systems on $Zsp{d}$. Z. Wahrsch. Verw. Gebiete 53 (1980), no. 2, 183-196. MR0580912 (82a:60147)
  5. Cox, J. T. Coalescing random walks and voter model consensus times on the torus in $Zsp d$. Ann. Probab. 17 (1989), no. 4, 1333-1366. MR1048930 (91d:60250)
  6. Cox, J.T.; Fleischmann, K. and Greven, A. Comparison of interacting diffusions and application to their ergodic theory. Probab. Theor. Rel. Fields, 105, (1996), 513-528. MR 97h:60073
  7. Cox, J. Theodore; Geiger, Jochen. The genealogy of a cluster in the multitype voter model. Ann. Probab. 28, (2000), no. 4, 1588-1619. MR1813835 (2002a:60157)
  8. Cox, J. T.; Greven, A. On the long term behavior of some finite particle systems. Probab. Theory Related Fields 85, (1990), no. 2, 195-237. MR1050744 (91i:60275)
  9. Cox, J.T. and Greven, A. Ergodic theorems for infinite systems of locally interacting diffusions, Ann. Probab. 22, (1994), no. 2, 833-853. MR 95h:60158
  10. Cox, J.T., Greven, A. and Shiga, T. Finite and infinite systems of interacting diffusions. Probab. Rel. Fields 103, (1995), 165-197. MR 96i:60105
  11. Cox, J.T. and Griffeath, D. Diffusive clustering in the two dimensional voter model. Ann. Probab. 14(2), (1986), 347-370. MR 87j:60146
  12. Dawson, D.A. The critical measure diffusion process. Z. Wahrscheinlichleitstheorie verw. Gebiete 40, (1977), 125-145. MR 57#17857
  13. Dawson, D.A. Measure-valued Markov processes. École d'Été de Probabilités de Saint Flour XXI - 1991, Lect. Notes in Math. 1541, (1993), 1-260, Springer-Verlag. MR 94m:60101
  14. Dawson, D.A. and Greven, A. State Dependent Multitype Spatial Branching Processes and their Longtime Behavior. EJP 8, (2003), paper 8. http://www.math.washington.edu/~ejpecp/viewissue.php?id=211 MR1961166(2004c:60265)
  15. Dawson, D.A., Greven, A. and Vaillancourt, J. Equilibria and Quasi-equilibria for infinite systems of Fleming-Viot processes. Transactions of the AMS 347, (1995), no. 7, 2277-2360. MR1297523(95k:60248)
  16. Dawson, D.A., and Perkins, E.A. Historical Processes. Memoirs of the AMS 93, (1991), 454. MR1079034 (92a:60145)
  17. Deuschel, J. D. Central limit theorem for an infinite lattice system of interacting diffusion processes. Ann. Probab. 16, (1988), 700-716. MR 89f:60022
  18. Donnelly, Peter; Evans, Steven N.; Fleischmann, Klaus; Kurtz, Thomas G.; Zhou, Xiaowen. Continuum-sites stepping-stone models, coalescing exchangeable partitions and random trees. Ann. Probab. 28, (2000), no. 3, 1063-1110. MR1797304 (2001j:60183)
  19. Donnelly, Peter; Kurtz, Thomas G. A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24, (1996), no. 2, 698-742. MR1404525 (98f:60162)
  20. Donnelly, P. and Kurtz, T.G. Particle representation for measure-valued population models Ann. Probab. 27, (1998), 166-205. MR1681126 (2000f:60108)
  21. Donnelly, Peter; Kurtz, Thomas G. Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9, (1999), no. 4, 1091-1148. MR1728556 (2001h:92029)
  22. Duquesne, T., and Le Gall, J.-F. Random trees, L{'e}vy processes and spatial branching processes, Ast{'e}rique 281, (2002). MR1954248 (2003m:60239)
  23. Durrett, R. An infinite particle system with additive interactions. Adv. Appl. Prob. 11, (1979), 355-383. MR 80i:60116
  24. Etheridge, A. Asymptotic behavior of measure-valued critical branching processes. Proc. AMS. 118, (1993), no. 4,1251-1261.  MR 93j:60118
  25. Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, (1986), x+534 pp. ISBN: 0-471-08186-8 MR0838085 (88a:60130)
  26. Fleischman, J. Limiting distributions for branching random fields. Trans. AMS. 239, (1978), 353-389.  MR0478375 (57#17858)
  27. Fleischmann, Klaus; Greven, Andreas. Diffusive clustering in an infinite system of hierarchically interacting diffusions. Probab. Theory Related Fields 98, (1994), no. 4, 517-566. MR1271108 (95j:60163)
  28. Fleischmann, K. and Greven, A. Time-space analysis of the cluster-formation in interacting diffusions. EJP, 1, (1996), no. 6,1-46, http://www.math.washington.edu/~ejpecp/EjpVol1/paper6.abs.html. MR 97e:60151
  29. Greven, A. Interacting stochastic systems: longtime behavior and its renormalization analysis. Jahresber. Deutsch. Math.-Verein. 102, (2000), no. 4, 149-170. MR1810300 (2001m:60224)
  30. Greven, A., Limic, V. and Winter A. Cluster formation in spatial Moran models in criticial dimension via particle representations, (in preparation 2005).
  31. Greven, A., Pfaffelhuber, P., and Winter, A. Time-space structure of genealogies of spatially interacting Moran models and applications to interacting Fisher-Wright diffusions, (in preparation).
  32. Gorostiza, L.G. and Wakolbinger, A. Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab. 19, (1991), no. 1,266-288.  MR 91k:60089
  33. Harris, T. E. Additive set-valued Markov processes and graphical methods. Ann. Probability 6, (1978), no. 3, 355-378. MR0488377 (58 #7925)
  34. Holley, R. and Liggett, T.M. Ergodic theorems for weakly interacting systems and the voter model. Ann. Probab. 3, (1975), 643-663. MR 53#6798
  35. Kallenberg, O. Stability of critical cluster fields Math. Nachr. 77, (1977), 7-43.  MR 56#1451
  36. Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13, (1982), no. 3, 235-248. MR0671034 (84a:60079)
  37. Kurtz, Thomas G. Particle representations for measure-valued population processes with spatially varying birth rates. Stochastic models (Ottawa, ON, 1998), 299-317, CMS Conf. Proc., 26, Amer. Math. Soc., Providence, RI, 2000. MR1765017 (2002b:60082)
  38. Leopold, K. Das Moranmodell mit Selektion. PhD-Thesis, Universit"at Erlangen-N"urnberg, (2001).
  39. Liggett, T. Interacting particle systems, Springer-Verlag, (1985). MR0776231 (86e:60089)
  40. Limic, V. and Sturm, A. (2005) The spatial $Lambda$-coalescent. Preprint.
  41. Liggett, T.M. and Spitzer, F. (1981), Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 56, 443-468.  MR 82h:60193
  42. Rebolledo, Rolando. Sur l'existence de solutions à certains problèmes de semimartingales. (French) C. R. Acad. Sci. Paris Sér. A-B 290, (1980), no. 18, A843-A846. MR0579985 (81f:60069)
  43. Shiga, T. An interacting system in population genetics. Jour. Kyoto Univ. 20(2), (1980), 213-243. MR 82e:92029a
  44. Winter, Anita. Multiple scale analysis of spatial branching processes under the Palm distribution. Electron. J. Probab. 7, (2002), no. 13, 72 pp. (electronic). MR1921742 (2003i:60175)
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489