![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Embeddable Markov Matrices
|
E B Davies, King's College London |
Abstract
We give an account of some results, both old and new, about any
$n×n$ Markov matrix that is embeddable in a one-parameter
Markov semigroup. These include the fact that its eigenvalues
must lie in a certain region in the unit ball. We prove that a
well-known procedure for approximating a non-embeddable Markov
matrix by an embeddable one is optimal in a certain sense.
|
Full text: PDF
Pages: 1474-1486
Published on: September 28, 2010
|
Bibliography
- Arendt, W.; Grabosch, A.; Greiner, G.; Groh, U.; Lotz, H. P.; Moustakas, U.; Nagel, R.; Neubrander, F.; Schlotterbeck, U. One-parameter semigroups of positive operators.Lecture Notes in Mathematics, 1184. Springer-Verlag, Berlin, 1986. x+460 pp. ISBN: 3-540-16454-5 MR0839450 (88i:47022)
- Chung, Kai Lai. Markov chains with stationary transition probabilities.Die Grundlehren der mathematischen Wissenschaften, Bd. 104 Springer-Verlag, Berlin-Göttingen-Heidelberg 1960 x+278 pp. MR0116388 (22 #7176)
- Cuthbert, James R. On uniqueness of the logarithm for Markov semi-groups. J. London Math. Soc. (2) 4 (1972), 623--630. MR0381006 (52 #1903)
- Cuthbert, James R. The logarithm function of finite-state Markov semi-groups. J. London Math. Soc. (2) 6 (1973), 524--532. MR0373009 (51 #9211)
- Davies, E. B. Triviality of the peripheral point spectrum. J. Evol. Equ. 5 (2005), no. 3, 407--415. MR2174879 (2006i:47071)
- Davies, E. Brian. Linear operators and their spectra.Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007. xii+451 pp. ISBN: 978-0-521-86629-3; 0-521-86629-4 MR2359869 (2008k:47001)
- Dunford, N.; Schwartz, J. T. Linear Operators, Part 1, Interscience Publ., New York, 1966.
- Eisner, Tanja. Embedding operators into strongly continuous semigroups. Arch. Math. (Basel) 92 (2009), no. 5, 451--460. MR2506946 (2010k:47086)
- Elfving, G. Zur Theorie der Markoffschen Ketten, Acta Soc. Sci. Fennicae, n. Ser. A2 no. 8, (1937) 1-17.
- Gantmacher, F. R. The theory of matrices. Vol. 1.Translated from the Russian by K. A. Hirsch.Reprint of the 1959 translation.AMS Chelsea Publishing, Providence, RI, 1998. x+374 pp. ISBN: 0-8218-1376-5 MR1657129 (99f:15001)
- Haase, Markus. Functional calculus for groups and applications to evolution equations. J. Evol. Equ. 7 (2007), no. 3, 529--554. MR2328937 (2008k:47091)
- Higham, Nicholas J. Functions of matrices.Theory and computation.Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. xx+425 pp. ISBN: 978-0-89871-646-7 MR2396439 (2009b:15001)
- Higham N J and Lin L., On $p$th roots of stochastic matrices. MIMS preprint, 2009.
- Israel, Robert B.; Rosenthal, Jeffrey S.; Wei, Jason Z. Finding generators for Markov chains via empirical transition matrices, with applications to credit ratings. Math. Finance 11 (2001), no. 2, 245--265. MR1822778 (2002a:60113)
- Johansen, S. A central limit theorem for finite semigroups and its application to the imbedding problem for finite state Markov chains. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 171--190. MR0331519 (48 #9852)
- Karpelevič, F. I. On the characteristic roots of matrices with nonnegative elements.(Russian) Izvestiya Akad. Nauk SSSR. Ser. Mat. 15, (1951). 361--383. MR0043063 (13,201a)
- Kingman, J. F. C. The imbedding problem for finite Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 1 1962 14--24. MR0145589 (26 #3119)
- Kreinin, A.; Sidelnikova, M. Regularization algorithms for transition matrices, Algo Research Quarterly, 4 (2001), 23--40.
- Minc, Henryk. Nonnegative matrices.Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication.John Wiley & Sons, Inc., New York, 1988. xiv+206 pp. ISBN: 0-471-83966-3 MR0932967 (89i:15001)
- Runnenberg, J. Th. On Elfving's problem of imbedding a time-discrete Markov chain in a time-continuous one for finitely many states. I. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 1962 536--541. MR0145579 (26 #3109)
- Singer, B.; Spilerman, S. The representation of social processes by Markov models, Amer. J. Sociology, 82 (1976), 1--54.
- Speakman, J. M. O. Two Markov chains with a common skeleton. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 1967 224. MR0212880 (35 #3745)
- Zahl, S. A Markov process model for follow-up studies, Human Biology, 27 (1955), 90--120.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|