![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Coupling Iterated Kolmogorov Diffusions
|
Wilfrid S Kendall, University of Warwick Catherine J. Price, Lehman Brothers |
Abstract
The Kolmogorov-1934 diffusion is the two-dimensional
diffusion generated by real Brownian motion and its time integral.
In this paper we construct successful co-adapted couplings for
iterated Kolmogorov diffusions defined by adding iterated time
integrals as further components to the original Kolmogorov
diffusion. A Laplace-transform argument shows it is not possible
successfully to couple all iterated time integrals at once; however
we give an explicit construction of a successful co-adapted coupling
method for Brownian motion, its time integral, and its
twice-iterated time integral; and a more implicit construction of a
successful co-adapted coupling method which works for finite sets of
iterated time integrals.
|
Full text: PDF
Pages: 382-410
Published on: April 29, 2004
|
Bibliography
- Aldous, David J.; Thorisson, Hermann. Shift-coupling.
Stochastic Process. Appl. 44 (1993), no. 1, 1-14. MR1198659 (94f:60066)
- Ben Arous, Gérard; Cranston, Michael; Kendall, Wilfrid S. Coupling constructions for hypoelliptic diffusions: two examples.
Stochastic analysis (Ithaca, NY, 1993),
193-212, Proc. Sympos. Pure Math., 57, Amer. Math. Soc., Providence, RI, 1995. MR1335472 (96d:60124)
- Burdzy, Krzysztof; Kendall, Wilfrid S. Efficient Markovian couplings: examples and counterexamples.
Ann. Appl. Probab. 10 (2000), no. 2, 362-409. MR1768241 (2002b:60129)
- Chen, Xia; Li, Wenbo V. Quadratic functionals and small ball probabilities for the $m$-fold integrated Brownian motion.
Ann. Probab. 31 (2003), no. 2, 1052-1077. MR1964958
- Corwin, Lawrence J.; Greenleaf, Frederick P. Representations of nilpotent Lie groups and their applications. Part I.
Basic theory and examples.
Cambridge Studies in Advanced Mathematics, 18. Cambridge University Press, Cambridge, 1990. viii+269 pp. ISBN: 0-521-36034-X MR1070979 (92b:22007)
- Cranston, M.; Wang, Feng-Yu. A condition for the equivalence of coupling and shift coupling.
Ann. Probab. 28 (2000), no. 4, 1666-1679. MR1813838 (2003b:60125)
- Temps locaux.
(French) [Local times] Exposés du Séminaire J. Azéma-M. Yor.
Held at the Université Pierre et Marie Curie, Paris, 1976-1977.
With an English summary.
Astérisque, 52,53. Société Mathématique de France, Paris, 1978. ii+223 pp. MR0509476 (81b:60042)
- Goldstein, Sheldon. Maximal coupling.
Z. Wahrsch. Verw. Gebiete 46 (1978/79), no. 2, 193-204. MR0516740 (80k:60041)
- Griffeath, David. A maximal coupling for Markov chains.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 95-106. MR0370771 (51 #6996)
- Groeneboom, Piet; Jongbloed, Geurt; Wellner, Jon A. Integrated Brownian motion, conditioned to be positive.
Ann. Probab. 27 (1999), no. 3, 1283-1303. MR1733148 (2000i:60092)
- Hayes, Thomas P.;
Vigoda, Eric. A non-Markovian coloring for randomly
sampling colorings. Technical report (2003), Dept. Computer
Science, University of Chicago. To appear in FOCS
2003. Math. Review number not available..
- Jerrum, Mark. Counting, sampling and integrating: algorithms and complexity.
Lectures in Mathematics ETH Zürich. Birkhäuser Verlag,
Basel, 2003. xii+112 pp. ISBN: 3-7643-6946-9 MR1960003
(2004a:68044)
- Kaimanovich, V. A. Brownian motion and harmonic functions on covering manifolds. An entropic approach.
(Russian) Dokl. Akad. Nauk SSSR 288 (1986), no. 5, 1045-1049. MR0852647 (88k:58163)
- Kendall, Wilfrid S. Stochastic differential geometry, a coupling property, and harmonic maps.
J. London Math. Soc. (2) 33 (1986), no. 3, 554-566. MR0850971 (88b:58149)
- Kendall, Wilfrid S. Probability, convexity, and harmonic maps. II. Smoothness via probabilistic gradient inequalities.
J. Funct. Anal. 126 (1994), no. 1, 228-257. MR1305069 (95j:58036)
- Khoshnevisan, Davar; Shi, Zhan. Chung's law for integrated Brownian motion.
Trans. Amer. Math. Soc. 350 (1998), no. 10, 4253-4264. MR1443196 (98m:60056)
- Kolmogoroff, A. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung).
(German) Ann. of Math. (2) 35 (1934), no. 1, 116-117. MR1503147
- Lachal, Aimé. Local asymptotic classes for the successive primitives of Brownian motion.
Ann. Probab. 25 (1997), no. 4, 1712-1734. MR1487433 (98j:60112)
- Leeb, Bernhard. Harmonic functions along Brownian balls and the Liouville property for solvable Lie groups.
Math. Ann. 296 (1993), no. 4, 577-584. MR1233483 (94g:58253)
- Lyons, Terry; Sullivan, Dennis. Function theory, random paths and covering spaces.
J. Differential Geom. 19 (1984), no. 2, 299-323. MR0755228 (86b:58130)
- McKean, H. P., Jr. A winding problem for a resonator driven by a white noise.
J. Math. Kyoto Univ. 2 1963 227-235. MR0156389
(27 #6312)
- Price, Catherine J. Zeros of
Brownian polynomials and Coupling of Brownian areas.
Ph. D. thesis (1996), Department of Statistics, University of
Warwick. Math. Review number not available.
- Propp, James Gary; Wilson, David Bruce. Exact sampling with coupled Markov chains and applications to statistical mechanics.
Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995).
Random Structures Algorithms 9 (1996), no. 1-2, 223-252. MR1611693 (99k:60176)
- Thorisson, Hermann. Coupling, stationarity, and regeneration.
Probability and its Applications (New York). Springer-Verlag, New York, 2000. xiv+517 pp. ISBN: 0-387-98779-7 MR1741181 (2001b:60003)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|