![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Diffusion and Scattering of Shocks in the Partially Asymmetric Simple Exclusion Process
|
Vladimir Belitsky, Universidade de São Paulo Gunter M. Schütz, Forschungszentrum Jülich |
Abstract
We study the behavior of shocks in the asymmetric simple exclusion process
on Z whose initial distribution is a product measure with a finite number
of shocks. We prove
that if the particle hopping rates of this process are in a particular
relation with the densities of the initial measure then the distribution of
this process at any time is a linear combination of shock measures
of the structure similar to that of the initial distribution. The structure of
this linear combination allows us to interpret this result by saying that
the shocks of the initial distribution perform continuous time random walks
on Z interacting by the exclusion rule. We give explicit expressions
for the hopping rates of these random walks. The result is derived with a help
of quantum algebra technique. We made the presentation self-contained
for the benefit of readers not acquainted with this approach, but interested
in applying it in the study of interacting particle systems.
|
Full text: PDF
Pages: 1-21
Published on: February 21, 2002
|
Bibliography
-
A. Boldrighini, C. Cosimi, A. Frigio, M. Grasso-Nunes,
Computer simulations of shock waves in the completely asymmetric
simple exclusion process, J. Stat. Phys.55, (1989), 611-623.
MR 90d:82001
-
B. Derrida, S. A. Janowsky, J. L. Lebowitz, E. R. Speer,
Exact solution of the totally asymmetric simple exclusion process:
Shock profiles, J. Stat. Phys.73 (1993), 813-842.
MR 95e:60102
-
B. Derrida, J. L. Lebowitz, E. R. Speer, Shock profiles
in the asymmetric simple exclusion process in one dimension,
J. Stat. Phys.89 (1997), 135-167.
MR 99f:82049
-
W. Feller, Introduction to the probability theory
and its applications. Vol. I, Wiley P, 1968 (3-d edition).
MR 37:3604
-
P. A. Ferrari, Shocks in one-dimensional processes
with drift. In Probability and Phase Transition. (Ed. G. Grimmett),
Cambridge, 1993.
MR 95h:60160
-
P. A. Ferrari, L. R. G. Fontes, Shock fluctuations
in the asymmetric simple exclusion process, Probab. Theor. Rel.
Fields 99, (1994), 305-319.
MR 95h:60159
-
P. A. Ferrari, L. R. G. Fontes and M. E. Vares, The
asymmetric simple exclusion model with multiple shocks, Ann. Inst.
Henri Poincaré, Probabilités et Statistiques 36, 2 (2000) 109-126.
MR 2001g:60244
-
P. A. Ferrari, C. Kipnis, S. Saada,
Microscopic structure of traveling waves in the asymmetric simple
exclusion process, Ann. Prob. 19, No.1 (1991), 226-244.
MR 92b:60099
-
A. N. Kirillov, N. Yu. Reshetikhin, in: Proceedings
of the 1988 Luminy Conference on Infinite-Dimensional Lie
Algebras and Groups,
V. G. Kac (ed.), World Scientific, Singapore (1988).
MR 90m:17022
-
A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky and
J. P. Straley, Phase diagram of one-dimensional driven lattice gases with
open boundaries, J. Phys. A 31 (1998), 6911 - 6919.
Math Review number not avialable.
-
K. Krebs, Ph.D. thesis, University of Bonn (2001).
Math Review number not avialable.
-
T. M. Liggett, Interacting Particle Systems Springer, Berlin (1985).
MR 86e:60089
-
T. M. Liggett, Stochastic Interacting Systems:
Contact, Voter and Exclusion Processes.
Springer, Berlin (1999).
MR 2001g:60247
-
V. Pasquier and H. Saleur, Common structures between
finite systems and conformal field theories through quantum groups,
Nucl. Phys. B 330 (1990), 523--556.
MR 91c:81146
-
G. M. Schütz, Duality relations for asymmetric
exclusion process, J. Stat. Phys. 86,
Nos. 5/6 (1997), 1265 - 1287.
MR 98c:82026
-
G. M. Schütz, Exactly solvable models for many-body
systems far from equilibrium,in Phase Transitions and
Critical Phenomena. Vol. 19, Eds. C. Domb and J. Lebowitz,
Academic Press, London, (2000). Math Review number not avialable.
-
G. M. Schütz, Exact solution of the master
equation for the asymmetric exclusion process, J. Stat. Phys. 88
(1997), 427 - 445.
MR 99e:82062
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|