|
|
|
| | | | | |
|
|
|
|
|
Alpha-Stable Branching and Beta-Coalescents
|
Matthias Birkner, Weierstrass Institute for Applied Analysis and Stochastics, Germany Jochen Blath, University of Oxford, UK Marcella Capaldo, University of Oxford, UK Alison M. Etheridge, University of Oxford, UK Martin Möhle, University of Tübingen, Germany Jason Schweinsberg, University of California at San Diego, USA Anton Wakolbinger, J. W. Goethe Universität |
Abstract
We determine that the continuous-state branching
processes for which the genealogy, suitably time-changed, can be
described by an autonomous Markov process are precisely those arising
from $alpha$-stable branching mechanisms. The random ancestral
partition is then a time-changed $Lambda$-coalescent, where $Lambda$
is the Beta-distribution with parameters $2-alpha$ and $alpha$, and
the time change is given by $Z^{1-alpha}$, where $Z$ is the total
population size. For $alpha = 2$ (Feller's branching diffusion) and
$Lambda = delta_0$ (Kingman's coalescent), this is in the spirit of
(a non-spatial version of) Perkins' Disintegration Theorem. For
$alpha =1$ and $Lambda$ the uniform distribution on $[0,1]$, this is
the duality discovered by Bertoin & Le Gall (2000) between the
norming of Neveu's continuous state branching process and the
Bolthausen-Sznitman coalescent.
We present two approaches: one, exploiting the `modified lookdown
construction', draws heavily on Donnelly & Kurtz (1999); the other
is based on direct calculations with generators.
|
Full text: PDF
Pages: 303-325
Published on: March 4, 2005
|
Bibliography
biblinks.html
Bertoin, Jean. Lévy processes.
Cambridge Tracts in Mathematics, 121. Cambridge University Press,
Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
(98e:60117)
Bertoin, Jean; Le Gall,
Jean-François. The Bolthausen-Sznitman coalescent and
the genealogy of continuous-state branching processes. Probab.
Theory Related Fields 117 (2000), no. 2,
249--266. MR1771663
(2001h:60150)
Bertoin, Jean; Le Gall,
Jean-François. Stochastic flows associated to
coalescent processes. Probab. Theory Related Fields
126 (2003), no. 2, 261--288. MR1990057
(2004f:60080)
Bertoin, Jean; Le Gall, Jean-François.
Stochastic flows associated to coalescent processes II: Stochastic
differential equations, Preprint (2004), available at http://www.proba.jussieu.fr/mathdoc/preprints/.
Math. Review number not available.
Bolthausen, E.; Sznitman, A.-S. On
Ruelle's probability cascades and an abstract cavity method. Comm.
Math. Phys. 197 (1998), no. 2, 247--276. MR1652734
(99k:60244)
Bovier, A; Kurkova, I.
Derrida's generalized random energy models 4: continuous-state
branching and coalescents, Preprint (2003), available at http://www.wias-berlin.de/people/bovier/files/bk04-good.pdf.
Math. Review number not available.
Dawson, Donald A. Measure-valued Markov processes.
École d'Été de Probabilités de
Saint-Flour XXI---1991, 1--260, Lecture Notes in Math., 1541, Springer,
Berlin, 1993. MR1242575
(94m:60101)
Dawson, Donald A.; Hochberg, Kenneth J.
Wandering random measures in the Fleming-Viot model. Ann. Probab.
10 (1982), no. 3, 554--580. MR0659528
(84i:92044)
Dawson, Donald A.; Perkins, Edwin A.
Historical processes. Mem. Amer. Math. Soc. 93
(1991), no. 454, iv+179 pp. MR1079034
(92a:60145)
Donnelly, Peter; Kurtz, Thomas G.
A countable representation of the Fleming-Viot measure-valued
diffusion. Ann. Probab. 24 (1996), no.
2, 698--742. MR1404525
(98f:60162)
Donnelly, Peter; Kurtz, Thomas G.
Particle representations for measure-valued population models. Ann.
Probab. 27 (1999), no. 1, 166--205. MR1681126
(2000f:60108)
Duquesne, Thomas; Le Gall,
Jean-François. Random trees, Lévy processes and
spatial branching processes. Astérisque No. 281,
(2002), vi+147 pp. MR1954248
(2003m:60239)
Durrett, Richard. Probability: theory and
examples.
Second edition.
Duxbury Press, Belmont, CA, 1996. xiii+503 pp. ISBN:
0-534-24318-5 MR1609153
(98m:60001)
El Karoui, Nicole; Roelly, Sylvie.
Propriétés de martingales, explosion et
représentation de
Lévy-Khintchine d'une classe de processus de branchement
à valeurs
mesures.
(French) [Martingale properties, explosion and Levy-Khinchin
representation of a class of measure-valued branching processes] Stochastic
Process. Appl. 38 (1991), no. 2, 239--266. MR1119983
(92k:60194)
Etheridge, Alison; March, Peter.
A note on superprocesses. Probab. Theory Related Fields
89 (1991), no. 2, 141--147. MR1110534
(92h:60080)
Ethier, Stewart N.; Kurtz, Thomas G.
Markov processes.
Characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability
and Mathematical Statistics. John Wiley & Sons, Inc., New York,
1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
(88a:60130)
Feller, William. An introduction to probability theory
and its applications. Vol. II.
John Wiley & Sons, Inc., New York-London-Sydney 1966
xviii+636 pp. MR0210154
(35 #1048)
Grey, D. R. Asymptotic behaviour of continuous time,
continuous state-space branching processes. J. Appl. Probability
11 (1974), 669--677. MR0408016
(53 #11783)
Jiv rina, Miloslav. Stochastic branching processes
with continuous state space. Czechoslovak Math. J.
8 (83) 1958 292--313. MR0101554
(21 #364)
Kingman, J. F. C. The representation of partition
structures. J. London Math. Soc. (2) 18
(1978), no. 2, 374--380. MR0509954
(80a:05018)
Kingman, J. F. C. The coalescent. Stochastic
Process. Appl. 13 (1982), no. 3, 235--248. MR0671034
(84a:60079)
Lamperti, John. Continuous state branching
processes. Bull. Amer. Math. Soc. 73
1967 382--386. MR0208685
(34 #8494)
Lamperti, John. The limit of a sequence of branching
processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
7 1967 271--288. MR0217893
(36 #982)
Le Gall, Jean-Francois; Le Jan, Yves.
Branching processes in Lévy processes: the exploration process. Ann.
Probab. 26 (1998), no. 1, 213--252. MR1617047
(99d:60096)
Möhle, M. Forward and backward diffusion
approximations for haploid exchangeable population models. Stochastic
Process. Appl. 95 (2001), no. 1, 133--149. MR1847095
(2002f:92021)
J. Neveu. A continuous-state
branching process in relation with the GREM model of spin glass
theory. Rapport interne no. 267, Ecole Polytechnique. Math.
Review number not available.
Perkins, Edwin A. Conditional Dawson-Watanabe
processes and Fleming-Viot processes.
Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991),
143--156, Progr. Probab., 29, Birkhäuser Boston, Boston, MA,
1992. MR1172149
(93h:60078)
Pitman, Jim. Coalescents with multiple collisions. Ann.
Probab. 27 (1999), no. 4, 1870--1902. MR1742892
(2001h:60016)
Revuz, Daniel; Yor, Marc.
Continuous martingales and Brownian motion.
Third edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 293. Springer-Verlag, Berlin,
1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
(2000h:60050)
Sagitov, Serik. The general coalescent with
asynchronous mergers of ancestral lines. J. Appl. Probab.
36 (1999), no. 4, 1116--1125. MR1742154
(2001f:92019)
Schweinsberg, Jason. A necessary and
sufficient condition for the $Lambda$-coalescent to come down from
infinity. Electron. Comm. Probab. 5 (2000), 1--11
(electronic). MR1736720
(2001g:60025)
Schweinsberg, Jason. Coalescent processes
obtained from supercritical Galton-Watson processes. Stochastic
Process. Appl. 106 (2003), no. 1, 107--139. MR1983046
(2004d:60222)
Silverstein, M. L. A new approach to local times. J.
Math. Mech. 17 1967/1968 1023--1054. MR0226734
(37 #2321)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|