|
|
|
| | | | | |
|
|
|
|
|
Limit theorems for Parrondo's paradox
|
S N Ethier, University of Utah Jiyeon Lee, Yeungnam University |
Abstract
That there exist two losing games that can be combined, either by random mixture or by nonrandom alternation, to form a winning game is known as Parrondo's paradox. We establish a strong law of large numbers and a central limit theorem for the Parrondo player's sequence of profits, both in a one-parameter family of capital-dependent games and in a two-parameter family of history-dependent games, with the potentially winning game being either a random mixture or a nonrandom pattern of the two losing games. We derive formulas for the mean and variance parameters of the central limit theorem in nearly all such scenarios; formulas for the mean permit an analysis of when the Parrondo effect is present.
|
Full text: PDF
Pages: 1827-1862
Published on: September 2, 2009
|
Bibliography
- Abbott, Derek (2009) Developments in Parrondo's paradox. In: In, V., Longhini, P., and Palacios, A. (eds.) Applications of Nonlinear Dynamics: Model and Design of Complex Systems. Series: Understanding Complex Systems. Springer-Verlag, Berlin, 307–321.
- Ajdari, A. and Prost, J. (1992) Drift induced by a spatially periodic potential of low symmetry: Pulsed dielectrophoresis. Comptes Rendus de l'Académie des Sciences, Série 2 315 (13) 1635–1639.
- Behrends, Ehrhard (2002) Parrondo's paradox: A priori and adaptive strategies. Preprint A-02-09. ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/2002/index.html.
- Berresford, Geoffrey C. and Rockett, Andrew M. (2003) Parrondo's paradox. Int. J. Math. Math. Sci. 2003 (62) 3957–3962. MR2036089 (2004j:91068).
- Billingsley, Patrick (1995) Probability and Measure, third edition. John Wiley & Sons Inc., New York. MR1324786 (95k:60001).
- Bradley, Richard C. (2007) Introduction to Strong Mixing Conditions, Volume 1. Kendrick Press, Heber City, UT. MR2325294 (2009f:60002a).
- Cleuren, B. and Van den Broeck, C. (2004) Primary Parrondo paradox. Europhys. Lett. 67 (2) 151–157.
- Costa, Andre, Fackrell, Mark, and Taylor, Peter G. (2005) Two issues surrounding Parrondo's paradox. In: Nowak, A. S. and Szajowski, K. (eds.) Advances in Dynamic Games: Applications to Economics, Finance, Optimization, and Stochastic Control, Annals of the International Society of Dynamic Games 7, Birkhäuser, Boston, 599–609. MR2104716 (2005h:91066).
- Durrett, Richard (1996) Probability: Theory and Examples, second edition. Duxbury Press, Belmont, CA. MR1609153 (98m:60001).
- Ekhad, Shalosh B. and Zeilberger, Doron (2000) Remarks on the Parrondo paradox. The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger. http://www.math.rutgers.edu/~zeilberg/pj.html.
- Epstein, Richard A. (2007) Parrondo's principle: An overview. In: Ethier, S. N. and Eadington, W. R. (eds.) Optimal Play: Mathematical Studies of Games and Gambling. Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, 471–492.
- Harmer, Gregory P. and Abbott, Derek (2002) A review of Parrondo's paradox. Fluct. Noise Lett. 2 (2) R71–R107.
- Kay, Roland J. and Johnson, Neil F. (2003) Winning combinations of history-dependent games. Phys. Rev. E 67 (5) 056128. arXiv:cond-mat/0207386.
- Kemeny, John G. and Snell, J. Laurie (1960) Finite Markov Chains. D. Van Nostrand Company, Inc., Princeton, NJ. MR0115196 (22 #5998).
- Key, Eric S., Klosek, Malgorzata M., and Abbott, Derek (2006) On Parrondo's paradox: How to construct unfair games by composing fair games. ANZIAM J. 47 (4) 495–511. MR2234017. arXiv:math/0206151.
- Moraal, Hendrik (2000) Counterintuitive behaviour in games based on spin models. J. Phys. A: Math. Gen. 33 L203–L206. MR1778614 (2001d:91049).
- Parrondo, Juan M. R. (1996) Efficiency of Brownian motors. Presented at the Workshop of the EEC HC&M Network on Complexity and Chaos, Institute for Scientific Interchange Foundation, Torino, Italy.
- Parrondo, Juan M. R., Harmer, Gregory P., and Abbott, Derek (2000) New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85 (24) 5226–5229. arXiv:cond-mat/0003386.
- Parrondo, J. M. R. and Dínis, Luis (2004) Brownian motion and gambling: From ratchets to paradoxical games. Contemp. Phys. 45 (2) 147–157.
- Percus, Ora E. and Percus, Jerome K. (2002) Can two wrongs make a right? Coin-tossing games and Parrondo's paradox. Math. Intelligencer 24 (3) 68–72. MR1927042 (2003f:91025).
- Philips, Thomas K. and Feldman, Andrew B. (2004) Parrondo's paradox is not paradoxical. Social Sciences Research Network. http://ssrn.com/abstract=581521.
- Pyke, Ronald (2003) On random walks and diffusions related to Parrondo's games. In: Moore, M., Froda, S., and Léger, C. (eds.) Mathematical Statistics and Applications: Festschrift for Constance Van Eeden. Institute of Mathematical Statistics, Lecture Notes–Monograph Series 42, Beachwood, OH, 185–216. MR2138293 (2006e:60062). arXiv:math/0206150.
- Rahmann, Sven (2002) Optimal adaptive strategies for games of the Parrondo type. Preprint. http://gi.cebitec.uni-bielefeld.de/people/rahmann/parrondo/rahmann-report.pdf.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|