|
|
|
| | | | | |
|
|
|
|
|
Near-critical percolation in two dimensions
|
Pierre Nolin, Ecole Normale Supérieure and Université Paris-Sud |
Abstract
We give a self-contained and detailed presentation of Kesten's results that allow to relate critical and near-critical percolation on the triangular lattice. They constitute an important step in the derivation of the exponents describing the near-critical behavior of this model. For future use and reference, we also show how these results can be obtained in more general situations, and we state some new consequences.
|
Full text: PDF
Pages: 1562-1623
Published on: September 17, 2008
|
Bibliography
- Aizenman, Michael. Scaling limit for the incipient spanning clusters. Mathematics of multiscale materials (Minneapolis, MN, 1995--1996), 1--24, IMA Vol. Math. Appl., 99, Springer, New York, 1998. MR1635999 (99g:82034)
- Aizenman, M.; Burchard, A. Hölder regularity and dimension bounds for random curves. Duke Math. J. 99 (1999), no. 3, 419--453. MR1712629 (2000i:60012)
- M. Aizenman, B. Duplantier, A. Aharony, Path crossing exponents and the external perimeter in 2D percolation, Phys. Rev. Lett. 83, 1359-1362 (1999).
- V. Beffara, V. Sidoravicius, Percolation theory, in Encyclopedia of Mathematical Physics, Elsevier (2006).
- van den Berg, J.; Kesten, H. Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (1985), no. 3, 556--569. MR0799280 (87b:60027)
- Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. Uniform boundedness of critical crossing probabilities implies hyperscaling. Statistical physics methods in discrete probability, combinatorics, and theoretical computer science (Princeton, NJ, 1997). Random Structures Algorithms 15 (1999), no. 3-4, 368--413. MR1716769 (2001a:60111)
- Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. The birth of the infinite cluster: finite-size scaling in percolation. Dedicated to Joel L. Lebowitz. Comm. Math. Phys. 224 (2001), no. 1, 153--204. MR1868996 (2002k:60199)
- Borgs, C.; Chayes, J. T.; Randall, D. The van den Berg-Kesten-Reimer inequality: a review. Perplexing problems in probability, 159--173, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999. MR1703130 (2000j:60119)
- Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B. Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys. 34 (1984), no. 5-6, 763--774. MR0751712 (86e:82019)
- Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B. Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241 (1984), no. 2, 333--380. MR0757857 (86m:81097)
- Camia, Federico; Newman, Charles M. Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys. 268 (2006), no. 1, 1--38. MR2249794 (2007m:82032)
- Camia, Federico; Newman, Charles M. Critical percolation exploration path and ${rm SLE}sb 6$: a proof of convergence. Probab. Theory Related Fields 139 (2007), no. 3-4, 473--519. MR2322705 (Review)
- Camia, Federico; Fontes, Luiz Renato G.; Newman, Charles M. The scaling limit geometry of near-critical 2D percolation. J. Stat. Phys. 125 (2006), no. 5-6, 1159--1175. MR2282484 (2007k:82053)
- Camia, Federico; Fontes, Luiz Renato G.; Newman, Charles M. Two-dimensional scaling limits via marked nonsimple loops. Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 4, 537--559. MR2284886
- Chayes, J. T.; Chayes, L.; Fröhlich, J. The low-temperature behavior of disordered magnets. Comm. Math. Phys. 100 (1985), no. 3, 399--437. MR0802552 (87i:82010)
- Chayes, J. T.; Chayes, L.; Fisher, Daniel S.; Spencer, T. Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57 (1986), no. 24, 2999--3002. MR0925751 (89a:82026)
- Chayes, J. T.; Chayes, L.; Durrett, R. Inhomogeneous percolation problems and incipient infinite clusters. J. Phys. A 20 (1987), no. 6, 1521--1530. MR0893330 (88k:82089)
- Chayes, J. T.; Chayes, L. On the upper critical dimension of Bernoulli percolation. Comm. Math. Phys. 113 (1987), no. 1, 27--48. MR0918403 (89c:82042)
- Chayes, J. T.; Chayes, L.; Grimmett, G. R.; Kesten, H.; Schonmann, R. H. The correlation length for the high-density phase of Bernoulli percolation. Ann. Probab. 17 (1989), no. 4, 1277--1302. MR1048927 (91i:60274)
- L. Chayes, P. Nolin, Large scale properties of the IIIC for 2D percolation, Stoch. Proc. Appl., to appear.
- Desolneux, Agnès; Sapoval, Bernard; Baldassarri, Andrea. Self-organized percolation power laws with and without fractal geometry in the etching of random solids. Fractal geometry and applications: a jubilee of Benoˆıt Mandelbrot, Part 2, 485--505, Proc. Sympos. Pure Math., 72, Part 2, Amer. Math. Soc., Providence, RI, 2004. MR2112129 (2005m:82064)
- Diestel, Reinhard. Graph theory. Second edition. Graduate Texts in Mathematics, 173. Springer-Verlag, New York, 2000. xiv+313 pp. ISBN: 0-387-95014-1 MR1743598
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114)
- Járai, Antal A. Incipient infinite percolation clusters in 2D. Ann. Probab. 31 (2003), no. 1, 444--485. MR1959799 (2004a:60159)
- Járai, Antal A. Invasion percolation and the incipient infinite cluster in 2D. Comm. Math. Phys. 236 (2003), no. 2, 311--334. MR1981994 (2004c:82111)
- Kesten, Harry. The critical probability of bond percolation on the square lattice equals ${1over 2}$. Comm. Math. Phys. 74 (1980), no. 1, 41--59. MR0575895 (82c:60179)
- Kesten, Harry. Percolation theory for mathematicians. Progress in Probability and Statistics, 2. Birkhäuser, Boston, Mass., 1982. iv+423 pp. ISBN: 3-7643-3107-0 MR0692943 (84i:60145)
- Kesten, Harry. The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73 (1986), no. 3, 369--394. MR0859839 (88c:60196)
- Kesten, Harry. A scaling relation at criticality for $2$D-percolation. Percolation theory and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984--1985), 203--212, IMA Vol. Math. Appl., 8, Springer, New York, 1987. MR0894549 (88j:60166)
- Kesten, Harry. Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 4, 425--487. MR0871905 (88b:60232)
- Kesten, Harry. Scaling relations for $2$D-percolation. Comm. Math. Phys. 109 (1987), no. 1, 109--156. MR0879034 (88k:60174)
- Kesten, H.; Sidoravicius, V.; Zhang, Y. Almost all words are seen in critical site percolation on the triangular lattice. Electron. J. Probab. 3 (1998), no. 10, 75 pp. (electronic). MR1637089 (99j:60155)
- Lawler, Gregory F. Conformally invariant processes in the plane. Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, RI, 2005. xii+242 pp. ISBN: 0-8218-3677-3 MR2129588 (2006i:60003)
- Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math. 187 (2001), no. 2, 237--273. MR1879850 (2002m:60159a)
- Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Values of Brownian intersection exponents. II. Plane exponents. Acta Math. 187 (2001), no. 2, 275--308. MR1879851 (2002m:60159b)
- Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. One-arm exponent for critical 2D percolation. Electron. J. Probab. 7 (2002), no. 2, 13 pp. (electronic). MR1887622 (2002k:60204)
- Langlands, Robert; Pouliot, Philippe; Saint-Aubin, Yvan. Conformal invariance in two-dimensional percolation. Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 1--61. MR1230963 (94e:82056)
- Morrow, G. J.; Zhang, Y. The sizes of the pioneering, lowest crossing and pivotal sites in critical percolation on the triangular lattice. Ann. Appl. Probab. 15 (2005), no. 3, 1832--1886. MR2152247 (2006h:60149)
- P. Nolin, Critical exponents of planar gradient percolation, Ann. Probab., to appear.
- P. Nolin, W. Werner, Asymmetry of near-critical percolation interfaces, J. Amer. Math. Soc., to appear.
- A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Letters {bf 12}, 381-383 (1970).
- Reimer, David. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput. 9 (2000), no. 1, 27--32. MR1751301 (2001g:60017)
- B. Sapoval, M. Rosso, J.F. Gouyet, The fractal nature of a diffusion front and the relation to percolation, J. Phys. Lett. 46, 146-156 (1985).
- Schramm, Oded. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221--288. MR1776084 (2001m:60227)
- O. Schramm, J.E. Steif, Quantitative noise sensitivity and exceptional times for percolation, Ann. Math., to appear.
- Smirnov, Stanislav. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239--244. MR1851632 (2002f:60193)
- Smirnov, Stanislav; Werner, Wendelin. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 (2001), no. 5-6, 729--744. MR1879816 (2003i:60173)
- Werner, Wendelin. Random planar curves and Schramm-Loewner evolutions. Lectures on probability theory and statistics, 107--195, Lecture Notes in Math., 1840, Springer, Berlin, 2004. MR2079672 (2005m:60020)
- W. Werner, Critical two-dimensional percolation, Lecture notes from the IAS/Park City 2007 summer school, in preparation.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|