![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise
|
Anne de Bouard, CMAP, CNRS and Ecole Polytechnique Arnaud Debussche, IRMAR, ENS Cachan Bretagne |
Abstract
We consider a randomly perturbed Korteweg-de Vries equation. The perturbation is a random potential depending both on space and time, with a white noise behavior in time, and a regular, but stationary behavior in space. We investigate the dynamics of the soliton of the KdV equation in the presence of this random perturbation, assuming that the amplitude of the perturbation is small. We estimate precisely the exit time of the perturbed solution from a neighborhood of the modulated soliton, and we obtain the modulation equations for the soliton parameters. We moreover prove a central limit theorem for the dispersive part of the solution, and investigate the asymptotic behavior in time of the limit process.
|
Full text: PDF
Pages: 1727-1744
Published on: August 24, 2009
|
Bibliography
-
F.G. Bass, Y.S. Kivshar, V.V. Konotop and Y.A. Sinitsyn. Dynamics of
solitons under random perturbations.
Phys. Rep. 157 (1988), 63-181.
Math. Review 89a:35231
-
T.B. Benjamin. The stability of solitary waves.
Proc. Roy. Soc. London A 328 (1972), 153-183.
Math. Review 49 #3348
-
J.L. Bona, P.E. Souganidis and W. Strauss. Stability and instability
of solitary waves of Korteweg-de Vries type.
Proc. Roy. Soc. London A 411 (1987), 395-412.
Math. Review 88m:35128
-
A. de Bouard and A. Debussche. On the stochastic Korteweg-de Vries equation.
J. Funct. Anal. 154 (1998), 215-251.
Math. Review 99c:35209
-
A. de Bouard and A. Debussche. Random modulation of solitons for the
stochastic Korteweg-de Vries equation.
Ann. IHP. Analyse Non linéaire 24 (2007), 251-278.
Math. Review 2008i:60103
-
A. de Bouard and A. Debussche. The Korteweg-de Vries equation with
multiplicative homogeneous noise.
Stochastic Differential Equations :
Theory and Applications 113-133, Interdiscip. Math. Sci., 2,
World Sci. Publ., Hackensack, NJ, 2007.
Math. Review 2009c:60171
-
A. de Bouard, A. Debussche and Y. Tsutsumi. White noise driven
Korteweg-de Vries equation.
J. Funct. Anal. 169 (1999), 532-558.
Math. Review 2000k:60125
-
A. de Bouard, A. Debussche and Y. Tsutsumi. Periodic solutions of the
Korteweg-de Vries equation driven by white noise.
SIAM J. Math. Anal. 36 (2004/05), no. 3, 815--855.
Math. Review 2005k:60194
-
A. de Bouard and R. Fukuizumi. Modulation analysis for a stochastic
NLS equation arising in Bose-Einstein condensation.
Accepted for publication in Asymptotic Analysis.
Preprint (2008) available at http://www.cmap.polytechnique.fr/preprint/
-
A. de Bouard and E. Gautier. Exit problems related to the persistence
of solitons for the Korteweg-de Vries equation with small noise.
Accepted for publication in Discrete Contin. Dyn. Syst. Ser. A.
Preprint (2008) available at http://www.cmap.polytechnique.fr/preprint/
-
J. Fröhlich, S. Gustafson, B. L. Jonsson
and I. M. Sigal. Solitary wave dynamics in an external potential.
Commun. Math. Phys. 250 (2004), 613-642.
Math. Review 2005h:35320
-
J. Fröhlich, S. Gustafson, B. L. Jonsson
and I. M. Sigal. Long time motion of NLS solitary waves in a confining
potential.
Ann. Henri Poincaré 7 (2006), 621-660.
Math. Review 2007f:35269
-
C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura.
Method for solving the Korteweg-de Vries equation.
Phys. Rev. Lett. 19 (1967), 1095-1097.
Math. Review number not available.
-
J. Garnier. Asymptotic transmission of solitons through random media.
SIAM J. Appl. Math. 58 (1998), 1969-1995.
Math. Review 99d:35151
-
R. Herman. The stochastic, damped Korteweg-de Vries
equation.
J. Phys. A. 23 (1990), 1063-1084.
Math. Review 91d:35189
-
N.V. Krylov. On the It^o-Wentzell formula for distribution-valued processes
and related topics.
Preprint (2009),
arXiv:0904.2752v2
-
Y. Martel and F. Merle. Asymptotic stability of solitons of the subcritical
gKdV equations revisited.
Nonlinearity 18 (2005), 55-80.
Math. Review 2006i:35319
-
C. Mueller, L. Mytnik and J. Quastel.
Small noise asymptotics of traveling
waves.
Markov Process. Related Fields 14 (2008), 333-342.
MR2453698
-
C. Mueller and R.B. Sowers. Random travelling waves for the KPP equation
with noise.
J. Funct. Anal. 128 (1995), 439-498.
Math. Review 97a:60083
-
R.L. Pego and M.I. Weinstein. Asymptotic stability of solitary waves.
Commun. Math. Phys. 164 (1994), 305-349.
Math. Review 95h:35209
-
J. Printems.
Aspects Théoriques et numériques de l'équation de
Korteweg-de Vries stochastique.
Thesis, Université de Paris Sud, Orsay, France, 1998.
-
M. Scalerandi, A. Romano and C.A. Condat,
Korteweg-de Vries solitons under additive stochastic perturbations.
Phys. Review E 58 (1998), 4166-4173.
Math. Review number not available.
-
P.C. Schuur.
Asymptotic analysis of soliton problems.
An inverse scattering approach.
Lect. Notes in Math. 1232, Springer Verlag, Berlin, 1984.
Math. Review 88e:35003
-
M. Wadati. Stochastic Korteweg-de Vries equations.
J. Phys. Soc. Japan 52 (1983), 2642-2648.
Math. Review 86b:35187
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|