![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Renormalization analysis of catalytic Wright-Fisher diffusions
|
Jan M. Swart, UTIA Klaus Fleischmann, WIAS Berlin |
Abstract
Recently, several authors have studied maps where a function,
describing the local diffusion matrix of a diffusion process with a
linear drift towards an attraction point, is mapped into the average
of that function with respect to the unique invariant measure of the
diffusion process, as a function of the attraction point. Such
mappings arise in the analysis of infinite systems of diffusions
indexed by the hierarchical group, with a linear attractive
interaction between the components. In this context, the mappings
are called renormalization transformations. We consider such maps
for catalytic Wright-Fisher diffusions. These are diffusions on the
unit square where the first component (the catalyst) performs an
autonomous Wright-Fisher diffusion, while the second component (the
reactant) performs a Wright-Fisher diffusion with a rate depending
on the first component through a catalyzing function. We determine
the limit of rescaled iterates of renormalization transformations
acting on the diffusion matrices of such catalytic Wright-Fisher
diffusions.
|
Full text: PDF
Pages: 585-654
Published on: August 3, 2006
|
Bibliography
-
J.-B. Baillon, Ph. Clément, A. Greven,
and F. den Hollander.
On the attracting orbit of a
non-linear transformation arising from renormalization of
hierarchically interacting diffusions. I. The compact case.
Canad. J. Math. 47(1) (1995) 3-27.
Math. Review 95m:60158
-
J.-B. Baillon, Ph. Clément, A. Greven, and F. den Hollander.
On the attracting orbit of a non-linear transformation arising from
renormalization of hierarchically interacting diffusions. II. The
non-compact case.
J. Funct. Anal. 146 (1997) 236-298.
Math. Review 98g:60177
-
J.T. Cox, D.A. Dawson, and A. Greven.
Mutually catalytic super branching random walks: Large finite systems
and renormalization analysis.
Mem. Am. Math. Soc. 809 (2004).
Math. Review 2005k:60298
-
D.A. Darling and P. Erdös.
On the recurrence of a certain chain.
Proc. Am. Math. Soc. 19(1) (1968) 336-338.
Math. Review 36 #6012
-
D.A. Dawson and A. Greven.
Hierarchical models of interacting diffusions: Multiple time scale
phenomena, phase transition and pattern of cluster-formation.
Probab. Theory Related Fields 96(4) (1993) 435-473.
Math. Review 94k:60155
-
D.A. Dawson and A. Greven.
Multiple time scale analysis of interacting diffusions.
Probab. Theory Related Fields 95(4) (1993) 467-508.
Math. Review 94i:60122
-
D.A. Dawson and A. Greven.
Multiple space-time scale analysis for interacting branching models.
Electron. J. Probab., 1 (1996) no. 14, approx. 84 pp.
Math. Review 97m:60148
-
D.A. Dawson, A. Greven and J. Vaillancourt.
Equilibria and quasi-equilibria for infinite collections of
interacting Fleming-Viot processes.
Trans. Amer. Math. Soc. 347(7) (1995) 2277-2360.
Math. Review 95k:60248
-
F. den Hollander and J.M. Swart.
Renormalization of hierarchically interacting isotropic diffusions.
J. Stat. Phys. 93 (1998) 243-291.
Math. Review 2000c:60160
-
S.N. Ethier and T.G. Kurtz.
Markov Processes; Characterization and Convergence.
John Wiley & Sons, New York, 1986.
Math. Review 88a:60130
-
N. El Karoui and S. Roelly.
Propriétés de martingales, explosion et représentation
de Lévy- Khintchine d'une classe de processus de branchement à
valeurs mesures.
Stoch. Proc. Appl. 38(2) (1991) 239-266.
Math. Review 92k:60194
-
W.J. Ewens.
Mathematical Population Genetics. I: Theoretical Introduction. 2nd ed.
Interdisciplinary Mathematics 27. Springer, New York, 2004.
Math. Review 2004k:92001
-
P.J. Fitzsimmons.
Construction and regularity of measure-valued branching processes.
Isr. J. Math. 64(3) (1988) 337-361.
Math. Review 90f:60147
-
K. Fleischmann and J.M. Swart.
Extinction versus exponential growth in a supercritical
super-Wright-Fischer diffusion.
Stoch. Proc. Appl. 106(1) (2003) 141-165.
Math. Review 2004h:60127
-
K. Fleischmann and J.M. Swart.
Trimmed trees and embedded particle systems.
Ann. Probab. 32(3a) (2004) 2179-2221.
Math. Review 2005m:60190
-
A. Greven, A. Klenke, and A. Wakolbinger.
Interacting Fisher-Wright diffusions in a catalytic medium.
Probab. Theory Related Fields 120(1) (2001) 85-117.
Math. Review 2002g:60160
-
M. Jiv rina.
Branching processes with measure-valued states.
In Trans. Third Prague Conf. Information Theory, Statist.
Decision Functions, Random Processes (Liblice, 1962),
pages 333-357, Czech. Acad. Sci., Prague, 1964.
Math. Review 29 #5293
-
O. Kallenberg.
Random Measures.
Akademie-Verlag, Berlin, 1976.
Math. Review 55 #4373
-
A. Klenke.
Different clustering regimes in systems of hierarchically interacting
diffusions.
Ann. Probab. 24(2) (1996) 660-697.
Math. Review 97h:60125
-
A. Liemant.
Kritische Verzweigungsprozesse mit allgemeinem Phasenraum. IV.
Math. Nachr. 102 (1981) 235-254.
Math. Review 83h:60049d
-
M. Loève.
Probability Theory 3rd ed.
Van Nostrand, Princeton, 1963.
Math. Review 34 #3596
-
M. Loève.
Probability Theory II 4th ed.
Graduate Texts in Mathematics 46.
Springer, New York, 1978.
Math. Review 58 #31324b
-
A. Pazy.
Semigroups of Linear Operators and Applications
to Partial Differential Equations.
Springer, New York, 1983.
Math. Review 85g:47061
-
L.C.G. Rogers and D. Williams.
Diffusions, Markov Processes, and Martingales, Volume 2: Ito
Calculus.
Wiley, Chichester, 1987.
Math. Review 89k:60117
-
F. Schiller.
Application of the Multiple Space-Time Scale Analysis on a
System of R-valued, Hierarchically Interacting, Stochastic Differential
Equations.
Master thesis, Universtity Erlangen-Nürnberg, 1998.
Math. Review number not available.
-
S. Sawyer and J. Felsenstein.
Isolation by distance in a hierarchically clustered population.
J. Appl. Probab. 20 (1983) 1-10.
Math. Review 84h:92022
-
T. Shiga.
An interacting system in population genetics.
J. Math. Kyoto Univ. 20 (1980) 213-242.
Math. Review 82e:92029a
-
J.M. Swart.
Large Space-Time Scale Behavior of Linearly Interacting
Diffusions.
PhD thesis, Katholieke Universiteit Nijmegen, 1999.
Math. Review number not available.
-
J.M. Swart.
Clustering of linearly interacting diffusions and universality of
their long-time limit distribution.
Prob. Theory Related Fields 118 (2000) 574-594.
Math. Review 2002b:60180
-
T. Yamada and S. Watanabe.
On the uniqueness of solutions of stochastic differential equations.
J. Math. Kyoto Univ. 11 (1971) 155-167.
Math. Review 43 #4150
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|