![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Intermittency on catalysts: symmetric exclusion
|
Jürgen Gärtner, Institut für Mathematik, Technische Universität Berlin Frank den Hollander, Mathematical Institute, Leiden University Gregory Maillard, Institut de Mathematiques, Ecole Polytechnique Federale de Lausanne |
Abstract
We continue our study of intermittency for the parabolic Anderson equation,
i.e., the spatially discrete heat equation on the d-dimensional integer
lattice with a space-time random potential.
The solution of the equation describes the evolution of a "reactant"
under the influence of a "catalyst".
In this paper we focus on the case where the random field is an exclusion
process with
a symmetric random walk transition kernel, starting from Bernoulli
equilibrium.
We consider the annealed Lyapunov exponents, i.e., the exponential
growth rates of the successive moments of the solution. We show that these
exponents are trivial when the random walk is recurrent, but display an
interesting dependence
on the diffusion constant when the random walk is transient, with
qualitatively different behavior in different dimensions. Special attention
is given to the asymptotics of the exponents when the diffusion constant
tends to infinity, which is
controlled by moderate deviations of the random field requiring a delicate
expansion argument.
In Gärtner and den Hollander [10] the case of a Poisson
field of independent (simple) random walks was studied. The two cases show
interesting differences and similarities. Throughout the paper, a comparison
of the two cases plays a crucial role.
|
Full text: PDF
Pages: 516-573
Published on: May 1, 2007
|
Bibliography
-
R. Arratia,
Symmetric exclusion processes: a comparison inequality and a large deviation result,
Ann. Probab. 13 (1985) 53-61.
MR770627 (86e:60088)
-
R.A. Carmona, L. Koralov and S.A. Molchanov,
Asymptotics for the almost-sure Lyapunov exponent for the solution of the
parabolic Anderson problem,
Random Oper. Stochastic Equations 9 (2001) 77-86.
MR1910468 (2003g:60104)
-
R.A. Carmona and S.A. Molchanov,
Parabolic Anderson Problem and Intermittency,
Mem. Amer. Math. Soc. 108 (1994), no. 518.
MR1185878 (94h:35080)
-
R.A. Carmona, S.A. Molchanov and F. Viens,
Sharp upper bound on the almost-sure exponential behavior of a stochastic
partial differential equation,
Random Oper. Stochastic Equations 4 (1996) 43-49.
MR1393184 (97d:60103)
-
C.-C. Chang, C. Landim and T.-Y. Lee,
Occupation time large deviations of two-dimensional symmetric simple exclusion process,
Ann. Probab. 32 (2004) 661-691.
MR2039939 (2005a:60036)
-
M. Cranston, T.S. Mountford and T. Shiga,
Lyapunov exponents for the parabolic Anderson model,
Acta Math. Univ. Comeniane 71 (2002) 163-188.
MR1980378 (2004d:60162)
-
M. Cranston, T.S. Mountford and T. Shiga,
Lyapunov exponents for the parabolic Anderson model with Lévy noise,
Probab. Theory Relat. Fields 132 (2005) 321-355.
MR2197105
-
J. D. Deuschel and D. W. Stroock,
Large Deviations,
Academic Press, London, 1989.
MR997938 (90h:60026)
-
J. Gärtner and M. Heydenreich,
Annealed asymptotics for the parabolic Anderson model with a moving catalyst,
Stoch. Proc. Appl. 116 (2006) 1511-1529.
MR2269214
-
J. Gärtner and F. den Hollander,
Intermittency in a catalytic random medium,
Ann. Probab. 34 (2006) 2219-2287.
Math. Review number not available.
-
J. Gärtner and W. König, The parabolic Anderson model, in:
Interacting Stochastic Systems (J.-D. Deuschel and A. Greven, eds.),
Springer, Berlin, 2005, pp. 153-179.
MR2118574 (2005k:82042)
-
J. Gärtner, W. König and S. Molchanov,
Geometric characterization of intermittency in the parabolic Anderson model,
Ann. Probab. 35 (2007) 439-499.
Math. Review number not available.
-
J. Gärtner and S.A. Molchanov, Parabolic problems for the Anderson model.
I. Intermittency and related topics.
Commun. Math. Phys. 132 (1990) 613-655.
MR1069840 (92a:82115)
-
F. den Hollander,
Large Deviations,
Fields Institute Monographs 14, A
merican Mathematical Society, Providence, RI, 2000.
MR1739680 (2001f:60028)
-
T. Kato,
Perturbation Theory for Linear Operators (2nd. ed.),
Springer, New York, 1976.
MR407617 (53 #11389)
-
H. Kesten and V. Sidoravicius,
Branching random walk with catalysts,
Electron. J. Probab. 8 (2003), no. 5, 51 pp. (electronic).
MR1961167 (2003m:60280)
-
C. Kipnis,
Fluctuations des temps d′occupation d′un site dans
l′exclusion simple symétrique,
Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 21-35.
MR877383 (88m:60272)
-
C. Landim,
Occupation time large deviations for the symmetric simple exclusion process,
Ann. Probab. 20 (1992) 206-231.
MR1143419 (93f:60150)
-
T.M. Liggett,
Interacting Particle Systems,
Grundlehren der Mathematischen Wissenschaften 276,
Springer, New York, 1985.
MR776231 (86e:60089)
-
F. Spitzer,
Principles of Random Walk (2nd. ed.),
Springer, Berlin, 1976.
MR388547 (52 #9383)
-
A.-S. Sznitman,
Brownian Motion, Obstacles and Random Media,
Springer, Berlin, 1998.
MR1717054 (2001h:60147)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|