![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On the number of collisions in Lambda-coalescents
|
Alexander Gnedin, Utrecht University Yuri Yakubovich, PDMI, St.Petersburg, Russia |
Abstract
We examine the total number of collisions Cn in the Λ-coalescent process which starts with n particles.
A linear growth and a stable limit law for Cn are shown under the assumption of a
power-like behaviour of the measure Λ near 0 with exponent 0 < α < 1.
|
Full text: PDF
Pages: 1547-1567
Published on: December 4, 2007
|
Bibliography
- J. Berestycki, N. Berestycki and J. Schweinsberg. Small-time behavior of beta coalescents. To
appear in Ann. Inst. H. Poincare Probab. Statist.; arXiv:math.PR/0601032.
- J. Berestycki, N. Berestycki, J. Schweinsberg. Beta-coalescents and continuous stable random
trees. Ann. Probab. 35 (2007), 1835–1887; arXiv:math.PR/0602113.
- J. Bertoin, J.-F. Le Gall. Stochastic flows associated to coalescent processes III: Limit theorems. Illinois J. Math. 50 (2006), no. 14, 147–181 (electronic); arXiv:math.PR/0506092.
MR2247827
- N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambr. Univ. Press (1987). MR0898871
- M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweinsberg, A. Wakolbinger,
Alpha-stable branching and beta-coalescents, Elec. J. Prob. 10 (2005), 303–325 (electronic). MR2120246
- E. Bolthausen, A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998), 247–276. MR1652734
- J.-F. Delmas, J.-S. Dhersin, A. Siri-Jegousse. Asymptotic results on the length of coalescent
trees. To appear in Ann. Appl. Probab.; arXiv:0706.0204.
- M. Drmota, A. Iksanov, M. Moehle, U. Roesler. A limiting distribution for the number of cuts
needed to isolate the root of a random recursive tree. Submitted to Random Struct. Algorithms.
- M. Drmota, A. Iksanov, M. Moehle, U. Roesler. Asymptotic results about the total branch
length of the Bolthausen–Sznitman coalescent. Stoch. Proc. Appl. 117 (2007), no. 10, 1404–1421.
- R. Dong, A. Gnedin and J. Pitman. Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Prob., 17 (2007), no. 4, 1172–1201.
- W. Feller. Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67 (1949), 98–119. MR0032114
- W. Feller. An Introduction to Probability Theory and Its Applications. Vol. 2. Second edition,
Wiley, New York (1971). MR0270403
- J. F. C. Kingman. The coalescent. Stochastic Process. Appl. 13 (1982), 235–248. MR0671034
- M. Möhle. On sampling distributions for coalescent processes with simultaneous multiple collisions, Bernoulli 12 (2006), 35–53. MR2202319
- M. Möhle. On the number of segregating sites for populations with large family sizes. Adv.
Appl. Prob. 38 (2006), 750–767. MR2256876
- J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999), 1870–1902. MR1742892
- S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 (1999), 1116–1125. MR1742154
- G. Samorodnitsky, M. S. Taqqu. Stable non-Gaussian random processes. Stochastic models with
infinite variance. Stochastic Modeling. Chapman & Hall, New York, 1994. MR1280932
- J. Schweinsberg. A necessary and sufficient condition for the Λ-coalescent to come down from
infinity. Elec. Comm. Probab. 5 (2000), 1–11. MR1736720
- W. Whitt. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research, Springer–Verlag, New York (2002).MR1876437
- V. M. Zolotarev. One-dimensional stable distributions. Providence, Rhode Island: American
Mathematical Society, Providence, RI, 1986. MR0854867
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|